TUDelft Variance in Steady-**State Simulation Optimization: Key Challenges and Algorithms**

Group 9

Lucas Verhofstad 5846706

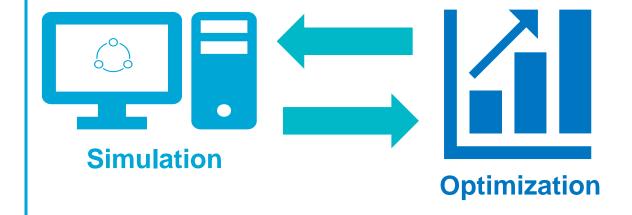
Felix Schemenz 6304974

Emma van den Brink 5136008

Tieme van Hijum 4923588

Simulation Optimization

- Model complex (stochastic) systems
- Optimize these models
- Support decision making
- Explore large solution spaces

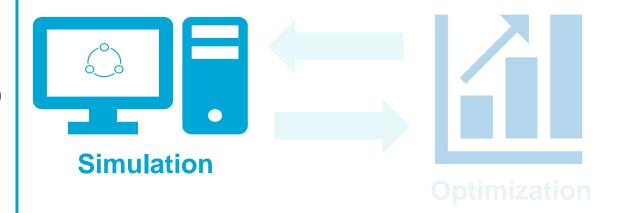


Simulation

Simulate until steady state

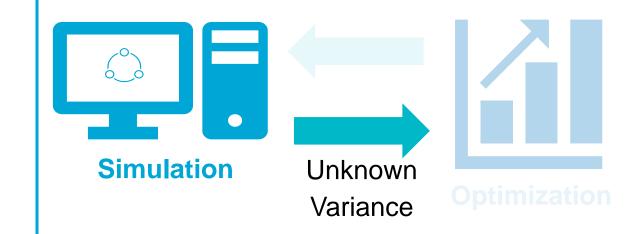
Simulation variability (finite run time)

Parameter variability (input data)

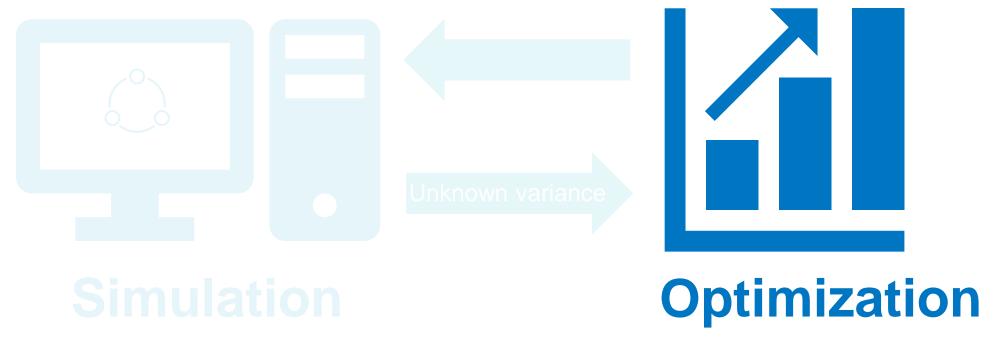


Problem statement

- Variability in Simulation output,
 thus variability in optimizer input
- Variance is unknown (late '60)
- Conway: batches

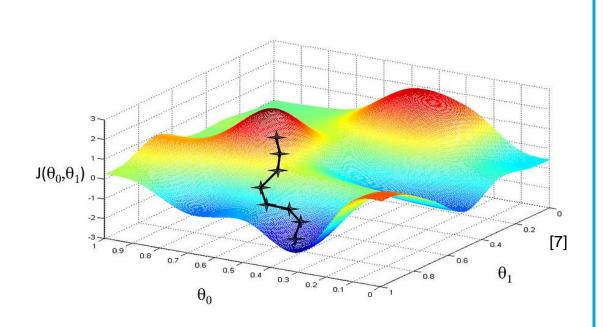


Optimization

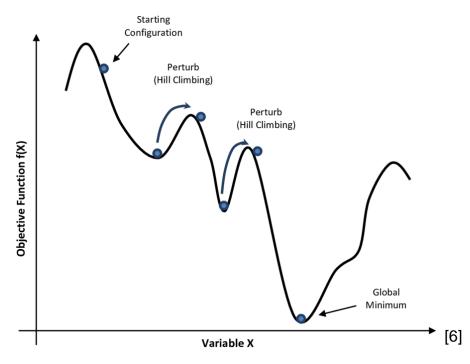


Stochasticity in Optimization Models

Two classes of classification methods:

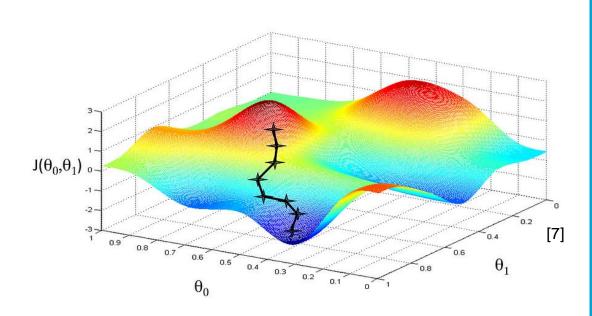


Mathematical Optimization



Approximate Algorithms

Stochasticity in Optimization Models

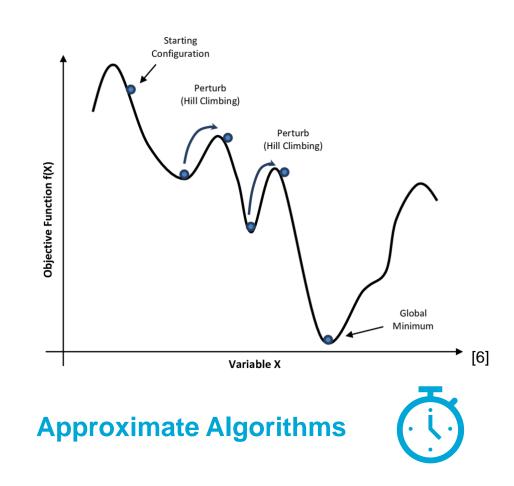


Mathematical Optimization

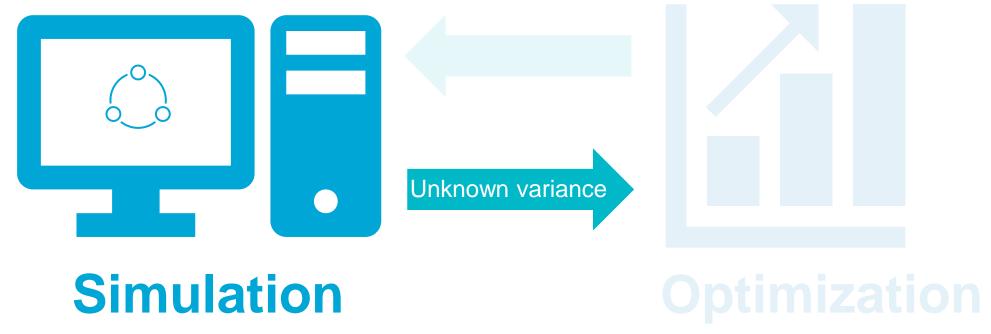
- Combination of techniques and methods for finding optimum within a set of constraints[1]
- Examples are linear optimization and non-linear optimization_[1]
- Use cases for simulation-based optimization:
 - Sensitivity analysis [2]
 - Validation of starting points & solutions [3]
- Problems through stochasticity:
 - Need of precise values

Stochasticity in Optimization Models

- Focus on quick good solutions rather than finding optimal solutions
- Examples are heuristics and metaheuristics_[4]
- Use cases for simulation-based optimization:
 - Comparison of different strategies [5]
 - Validation of solutions_[5]
- Problems through stochasticity:
 - Interpretation of simulation results becomes more difficult



Variance in Simulation output



Asymptotic Normality Theory

Predictable distribution of simulation averages

Based on Central Limit Theorem
Assumes finite variance
Assumes not fat tailed distribution
Assumes large sample size
Results in confidence intervals
Uses Gaussian distribution

Bootstrapping

Resampling to estimate variability without strong assumptions

Based on observed data
No assumptions
Less simulation runs needed
More computation needed

Direct Two-Point Method

Simple variance estimation through independent runs

Based on difference of two points
Assumes rough spread around the mean
Quick and simple
Not robust

Possible combination with optimization models

Mathematical optimization

&

Asymptotic Normality Theory

Asymptotic Normality Theory enables precise values

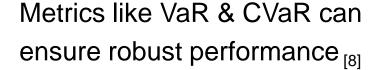
High computational time for both simulation & optimization

Approximate algorithms

&

Bootstrapping

Better understanding of distribution



Thank you for your attention!

References

- [1] Snyman, J., Wilke, D.: Practical Mathematical Optimization. Springer (2018). https://doi.org/10.1007/978-3-319-77586-9
- [2] Tan, L., Tang, Z., Zhong, R., Huang, X., Liu, R., Chen, C.: An optimization strategy based on dimension reduction method in wireless charging system design. IEEE Access 7, 151733–151745 (2019). https://doi.org/10.1109/ access.2019.2948196
- [3] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, Springer, New York, NY (2006), https://link.springer.com/book/10.1007/978-0-387-40065-5
- [4] Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley Publishing, 1st edn. (2010)
- [5] Minetti, G.F., Hernández, J.L., Carnero, M., Salto, C., Bermúdez, C., Sánchez, M.: Tuning a hybrid SA based algorithm applied to Optimal Sensor Network Design. Journal of Computer Science and Technology 20, e03 (2020). https://doi.org/10.24215/16666038.20.e03
- [6] Kotkar, s.: Simulated Annealing, Medium [2020]. https://medium.com/analytics-vidhya/simulated-annealing-869e171e763c
- [7] Adejumo, J.: Gradient Descent From Scratch- Batch Gradient Descent, Stochastic Gradient Descent, and Mini-Batch Gradient Descent., Medium [2023], https://medium.com/@jaleeladejumo/gradient-descent-from-scratch-batch-gradient-descent-stochastic-gradient-descent-and-mini-batch-def681187473
- [8] Theate, Thibaut; Ernst, D.: Risk-sensitive policy with distributional reinforcement learning. Algorithms (2023), https://doi.org/10.3390/a16070325

