SEN9110 Simulation Masterclass Lecture 12: Multi-Resolution Simulation

Prof.dr.ir Alexander Verbraeck a.verbraeck@tudelft.nl

Brightspace: SEN9110

1.

Multi-Resolution Modeling (MRM)

Multi-Resolution Modeling

The researcher on Multi-Resolution Modeling is Paul K. Davis from RAND Corporation in the USA

What is resolution?

- fidelity
- level of detail?
- accuracy?
- precision?

Here: resolution is **level of detail** of a (sub)model.

Resolution

Model may be high resolution in one respect and low in another:

- entities
- attributes
- processes
- temporal
- spatial
- behavior
- etc.

Definition

Davis and Bigelow (1998) define multi-resolution modeling as follow:

- 1. Building a single model with different levels of resolution for a problem;
- 2. Building an integrated family of consistent models with different levels of resolution for a problem; or
- 3. Both

Requirements for Multi-Resolution Models

(Yilmaz et al., 2007)

- The knowledge regarding its configuration and representation must be decoupled from the model.
- 2. The concurrent interactions at multiple levels of resolution must be combined consistently
- The state of entities at different levels of resolution has to be consistent.
- 4. The behavior of the entities can be altered from within.
- 5. Independence of the constraints regarding when and under what conditions the consistency of the elements of families of submodels in a multiresolution model be enforced.
- 6. Dynamic loading and linking of the entities into the run-time environment of the simulation.
- 7. Construction of the state can be continued from a specific state after an update operation.
- 8. The existence of a mechanism for changing the structure and behavior of the model dynamically.
- 9. Definitions of behavioral resolutions must be flexible to facilitate analysis that is independent of an implementation.
- 10. Mechanisms to decide when and under what conditions to replace existing models with a successor or alternative are important in order to perform the multi-resolution models.

Need for both hi-res and lo-res models

(Davis, Report WR-224, 2005 – see background literature)

Low-Resolution	High-Resolution
Early design	Detailed design
Using low-resolution knowledge	Using high-resolution knowledge
Analysis responding to high- level questions	Narrow, in-depth analysis for accuracy, precision, or detail
Reasoning and comprehension with high-level variables	Reasoning and comprehension at more atomic level of phemonena
Informing, calibrating, or summarizing hi-res work	Informing, calibrating, or explaining lo-res work
Abstracting "big picture"	Simulating reality

Taxonomy of multimodels (1)

Based on structure

Based on	Additional Criteria				Type of multimodel (MM)
					(Synonyms are represented within parentheses)
	Number of submodels active at a given time On			Only one	Single aspect MM (Sequential MM)
				2 or more	Multiaspect MM
Structure of	Variability Static				Static-structure MM
submodels	of structure (variability	Dynamic	Number of submodels	Extensible	Extensible MM
	of number of submodels)	(Dynamic- structure MM)		Depends on model's stage	Multistage MM
		(Variable-	Alterations of		
		structure MM)	submodels	No	Non-mutational MM
				Yes	Mutational MM
					Evolutionary MM

Yilmaz, WSC2007

Taxonomy of multimodels (2)

Based on behavior

Yilmaz, WSC2007

Based on	Additional Criteria				Type of multimodel (MM)
Behavior (activation)	Nature of Constraint-driven knowledge			Constraint-driven MM (Adaptive MM)	
	to activate submodels Pattern- directed (Pattern- directed MM) (Metamorphic MM)	Sub- model selec- tion is cyclic	No	Acyclic MM	
		112112)		Yes	Cyclic MM
		Goal-directed		Goal-directed MM (Exploratory MM)	
Location of knowledge		Within the MM (Internal activation of submodels)		Active MM (Internally activated MM)	
	to activate submodels	Outside the MM (External activation of submodels)			Passive MM (Externally activated MM)

Approaches for MRM

(Rabelo et al, 2015)

Many different approaches:

- Hierarchical modeling
- Middleware regulation
- Regulator as a federate
- Resolution converter
- Selective viewing
- Aggregation / Disaggregation
- Multi-Resolution Events (MRE)
- Hybrid disaggregation/MRE
- Agent-based

Aggregation / Disaggregation

Aggregation is relatively easy:

define an aggregation operator that aggregates state / entities / behavior over time or over another variable

Example: from individual cars per lane to vehicle density per lane

• Disaggregation is hard:

extra information is needed to disaggregate as certain information was erased by the aggregation operator

 Example: to reconstruct cars from a density function, information about types of cars (e.g., car, truck), speed profiles, O/D, etc. have to be recreated

Linking aggregate and disaggregate models

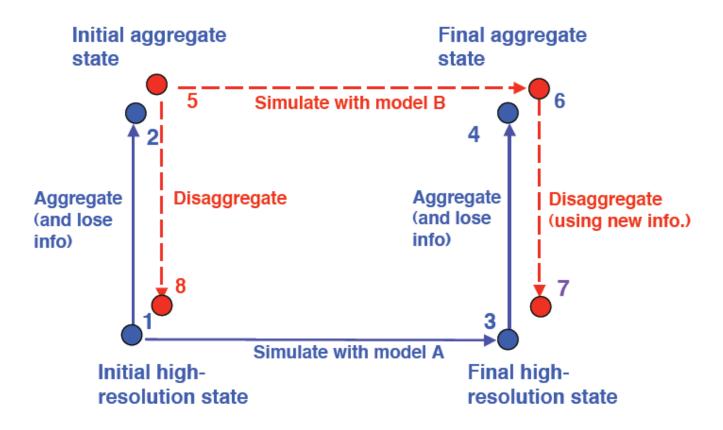
But what is even harder is **correct** connections between aggregate and disaggregate models:

- aggregation and disaggregation have to happen in simulation time
 - Example: when a car leaves the detailed model, its presence has to be added to the density function
 - Example: but when do we disaggregate a car from the density function?
- the connection between the aggregate model and disaggregate model has to show realistic behavior as well
 - Example: when there is a traffic jam in the disaggregate model, the density function has to implement the kickback in the aggregate model
 - Example: same the other way around -> slow uptake in aggregate model

Checking correct implementation (1)

(Davis, Report WR-224, 2005 – see background literature)

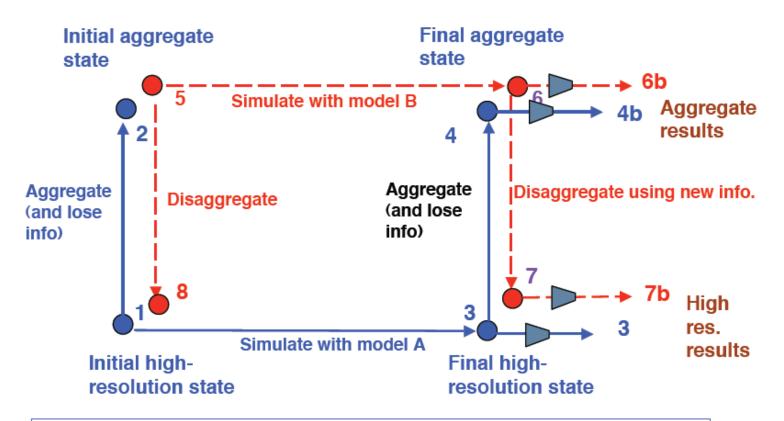
State Diagram for Model A (Hi-Res)



Checking correct implementation (2)

(Davis, Report WR-224, 2005 – see background literature)

Adding State Diagram for Model B (Lo-Res)



Checking correct implementation (3)

(Davis, Report WR-224, 2005 – see background literature)

Project Problem-Relevant Implications of Final State

Weak consistency: 4b = 6b + ignorable error in relevant "experimental frame"Strong consistency: <math>3 = 7b + ignorable error in relevant "experimental frame"

Conclusions

When linking (sub)models in hierarchical simulation or in distributed simulation:

- study the resolution of the models
- study the resolution of the entities, attributes, behavior, ...
- provide conversion functions for aggregation / disaggregation where necessary
- provide additional information for disaggregation functions
- check whether behavior has to be channeled through the interfaces to implement correct behavior
- test whether the dis/aggregation functions are correct by crossvalidating as illustrated by Davis

In many cases resolution between (sub)models is different!

2.

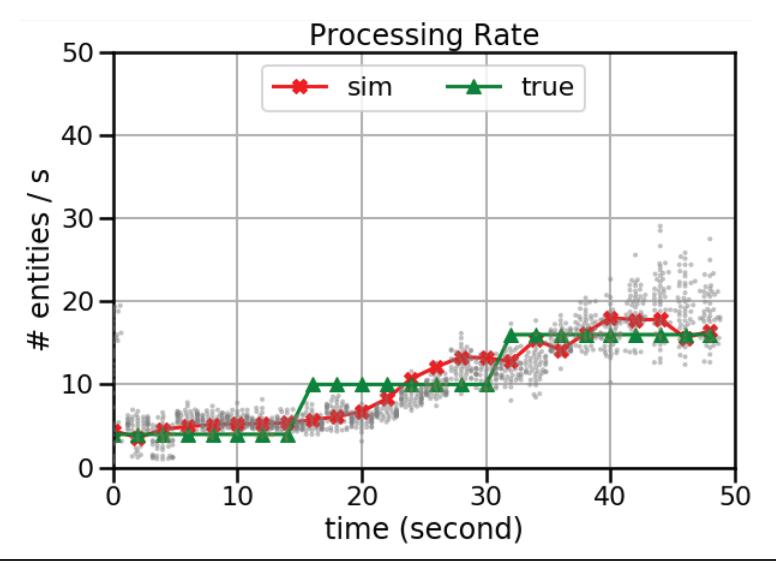
Data Assimilation into Simulation Models

Data assimilation

- Data about **parts** of the state
- Not necessarily state variables themselves
- Observed at intervals or at events
- Errors in observations
- Missing values

Data assimilation methods

For continuous models


Kalman filter most used method

For <u>discrete</u> models

- Many based on Monte Carlo
- Particle filtering the most promising method
 - multiple simulation runs in parallel (particles)
 - spread for the state variables
 - when observation comes in: resample around the particle(s) that best predicted the observation (<u>importance sampling</u>)
 - introduce enough spread in the particles to:
 - account for error in the observation
 - account for drift / behavior / state change in the model

Example (thesis Yubin Cho, EPA 2019)

