SEN9110 Simulation Masterclass 14. Simulation Languages (2)

Prof.dr.ir Alexander Verbraeck a.verbraeck@tudelft.nl

Brightspace: SEN9110

Agenda

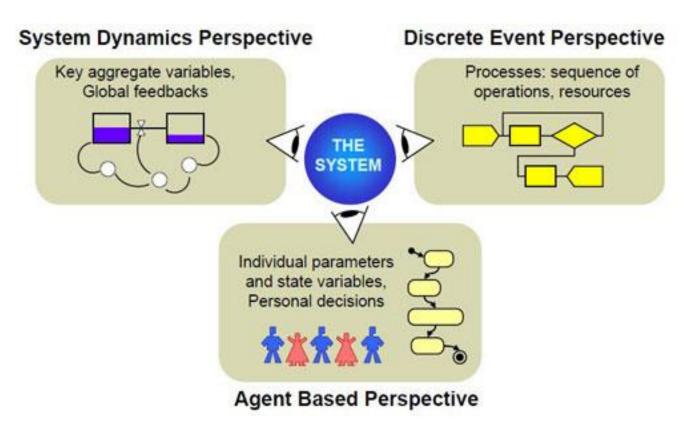
- Simulation Language demonstrations and comparison [2]
- Simulation Environments
 - AnyLogic
 - DSOL
 - Simio
 - Salabim
- Simulation Comparison

Paper: T.W. Tewoldeberhan, A. Verbraeck and V. Hlupic. Implementing a discrete-event simulation software selection methodology for supporting decision making at Accenture. Journal of the Operational Research Society (2010) 61, 1446-1458.

Questions about earlier lectures

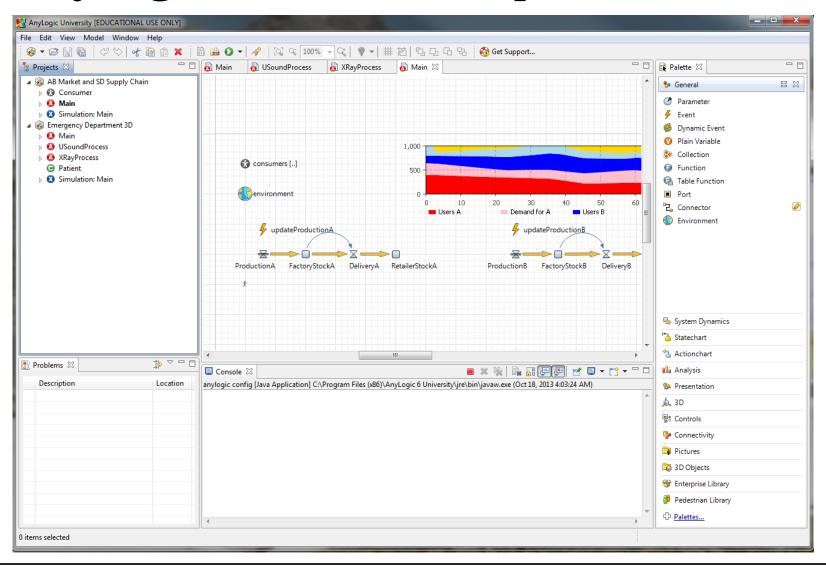
7.

AnyLogic

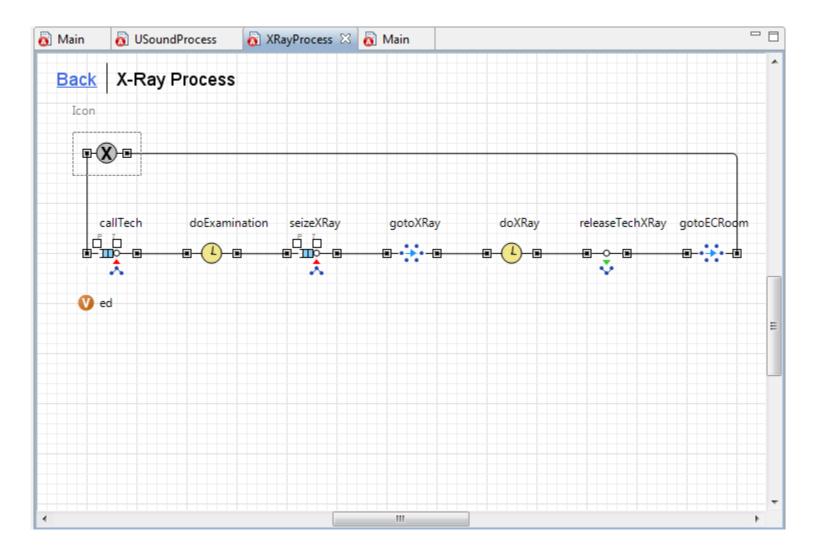


AnyLogic

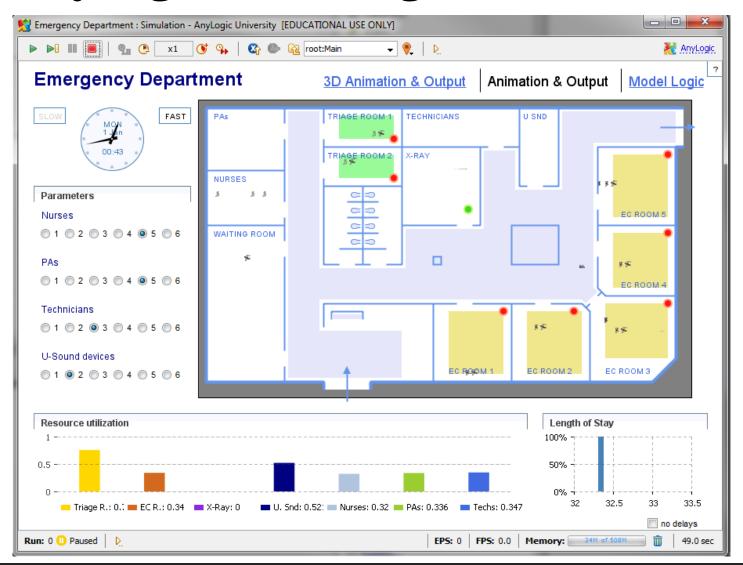
- Java-based, adapted Eclipse development environment
- DES + SD + Agents
- Mixed models possible
- Discrete time and continuous time
- Different libraries of components available
- 2D and 3D animation, optimization


AnyLogic

Source: wikipedia



AnyLogic: model development



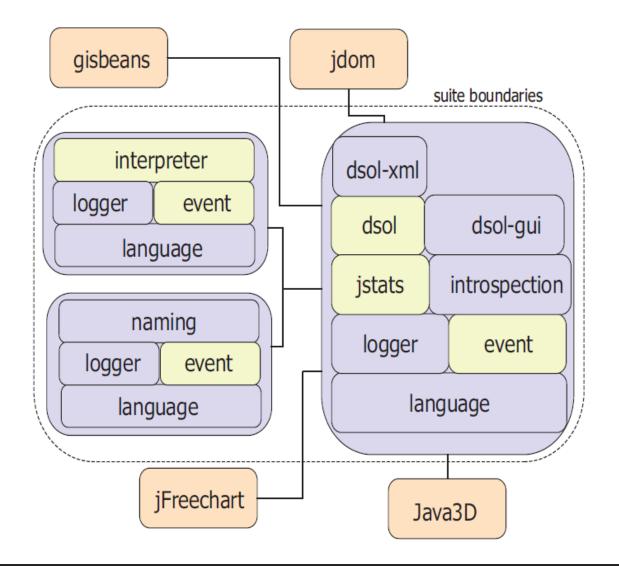
AnyLogic: DES model development

AnyLogic: Running model

8.

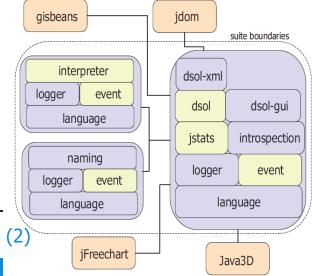
DSOL

DSOL


- Programming environment in Java with libraries
- Event scheduling, continuous modeling, process interaction
- Explicit DES, DEVS, DESS, DEV&DESS, DSDEVS, etc.
- Mixed model possible
- Animation, optimization, statistics included
- Embedding and extension possible: open, public domain software

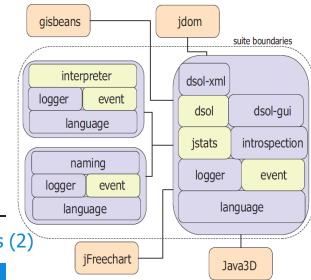
The 3 main requirements for DSOL

- Distributing the framework for modeling and simulation.
- Providing enough formalisms for the construction of models
- Implementing in a service oriented architecture.


Services of DSOL

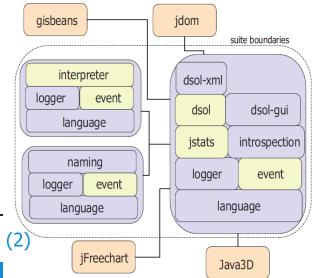
DSOL service

- The DSOL service is the core simulation service.
- The core service provides a set of interfaces and classes for simulation. It provides a set of interfaces and classes for simulation.
- This service contains discrete and continuous formalisms, the specification of the
 DSOL experiment, continuous and discrete distributions, statistics and classes supporting 2-dimensional animation.



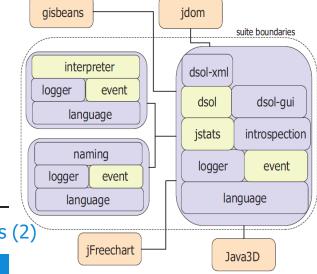
elft niversity of echnology SEN9110 - Simulation Languages (2)

DSOL-GUI service


- The collection of classes which provide a web enabled graphical user interface for DSOL.
- We emphasize the importance of designing a good user interface to separate environments for model development and for model execution, but this is not part of DSOL.
- A reference implementation of a web enabled user interface is presented with this service.

DSOL-XML service

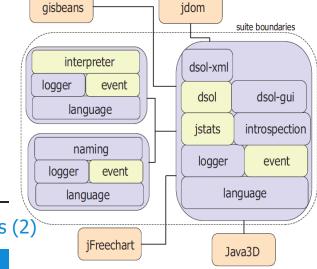
- Over the last decade, XML has become the lingua franca for the configuration of applications.
- XML is namely a platform independent, human readable language.
- The DSOL-XML service provides parsers for the DSOL experimental frame and as such enables users to specify an experimental frame in XML.
- The value of this service is that it enables the specification of experiments without having knowledge of the Java programming language.



Delft University of Dechaplogy

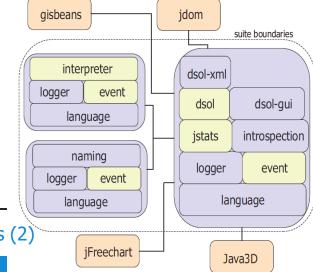
Interpreter service

- The specification of the process interaction formalism should not be based on Java threads.
- To specify the process interaction formalism in Java we have developed the interpreter service: a Java virtual machine implemented in Java.



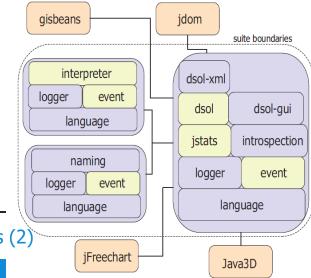
SEN9110 - Simulation Languages (2)

JSTATS Service


 This service provides a set of continuous and discrete distribution functions and links DSOL to external mathematical and chart libraries.

Naming service

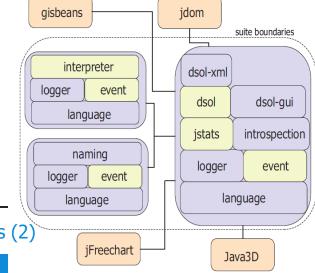
- The naming service provides Yellow Page functionality to the DSOL suite.
- The naming service provides this functionality both to simulation model objects and to those objects constituting the DSOL suite.



SEN9110 - Simulation Languages (2)

Introspection service

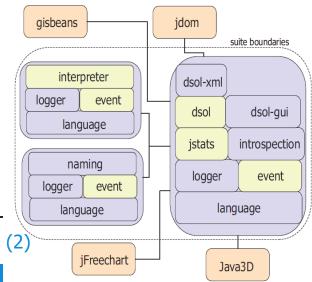
- This service provides an introspection service to users; the service enables users to open a simulation model object and to introspect, i.e. to see and change, attribute values through a graphical user interface.
- The value of the introspection service is that it provides the ability to drill down into simulation objects.
- This service aims to improve operational insight in the output of experimentation.



Delft University of Technology

Event service

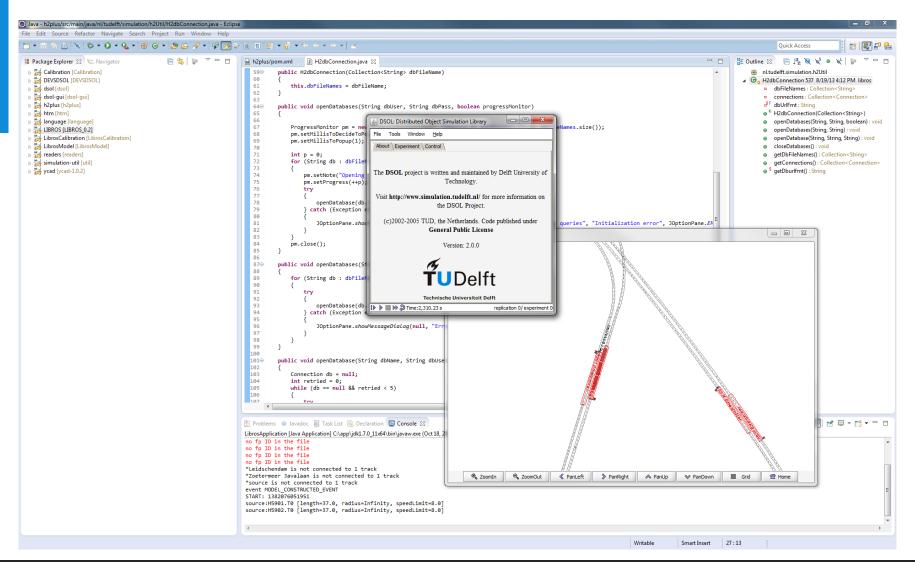
- This service provides a distributed asynchronous event mechanism.
- The value of the event service is that it enables loosely coupled relations between objects in the suite.



SEN9110 - Simulation Languages (2)

Logger service

- The DSOL simulation suite contains a logger service which is based on Java's logging mechanism (Sun Microsystems, 2001a).
- The value of this service is that output, debug information, warnings, etc. produced by objects in the suite are captured and, after they are filtered and formatted, presented to subscribed listeners.
- DSOL's Logger service provides a set of filters and formatters to provide distributed logging.



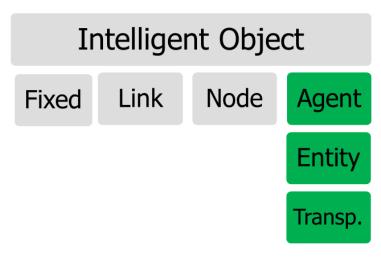
Interdependencies between the services

	lang.	event	logger	naming	jstats	introsp.	interpr.	dsol	dsol-xml
language									
event	•								
logger	•	•							
naming	•	•	•						
jstats	•	•	•						
introsp.	•	•	•						
interpr.	•	•	•						
dsol	•	•	•	•	•	•	•		
dsol-xml	•	•	•	•	•	•	•	•	
dsol-gui	•	•	•	•	•	•	•	•	•

DSOL: programming environment (Java)

Conclusions

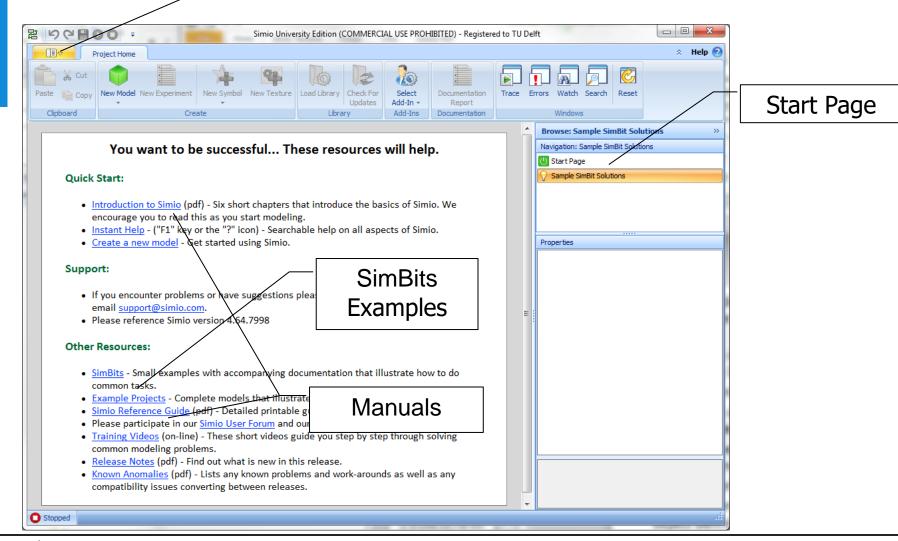
- DSOL is a Java based distributed application.
- DSOL is an object-oriented simulation framework for distributed modeling.
- DSOL supports several formalisms among which DES, DESS, DEVS, DEV&DESS.
- DSOL is open source and published under BSD on github


9.

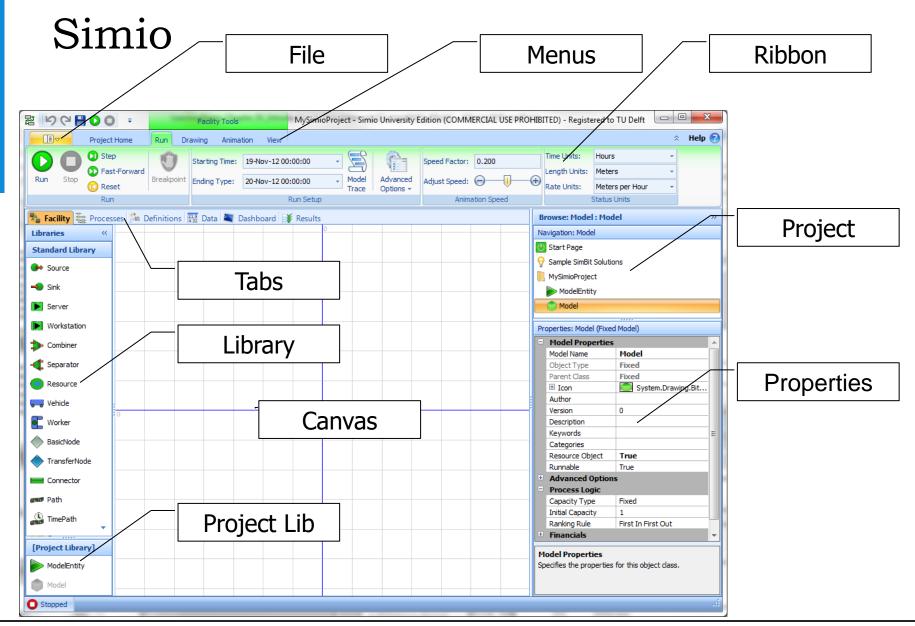
Simio

Simio

- Object oriented (intelligent objects -> agents)
- Mix object (simple) and process (flexible) paradigms within the same model.
- Every object is a model; every model is an object

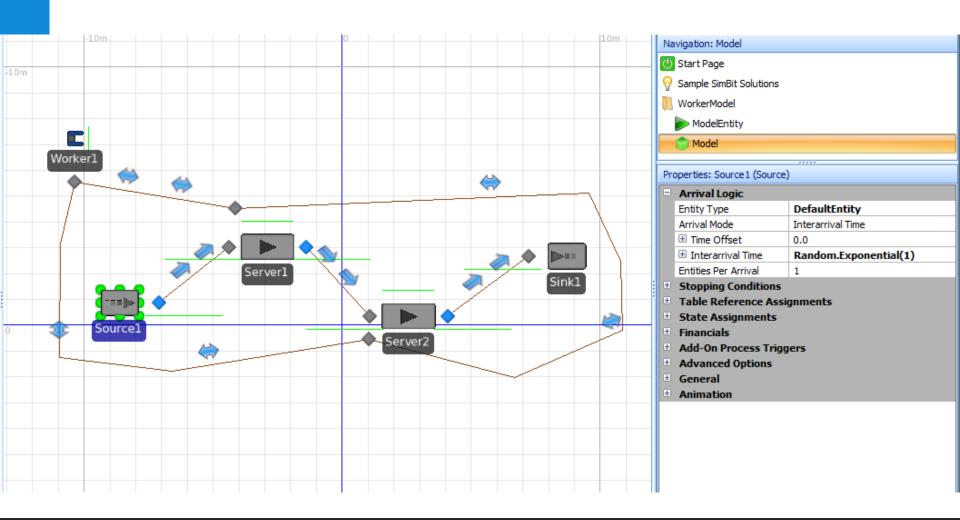


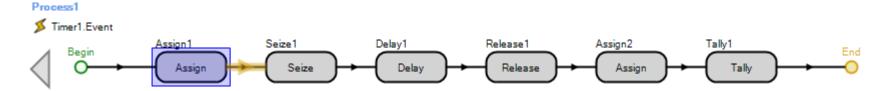
Strong animation; 3D objects can be imported from the Google 3D Warehouse

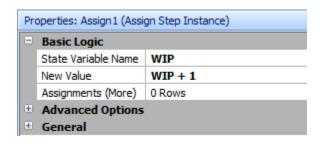


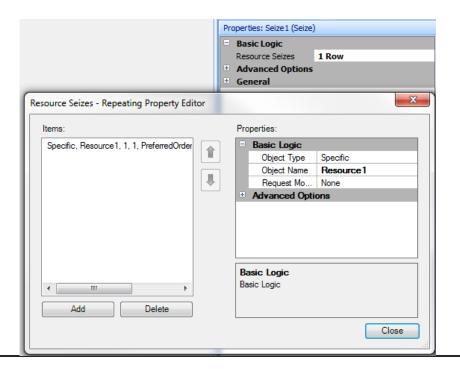
Simio

File

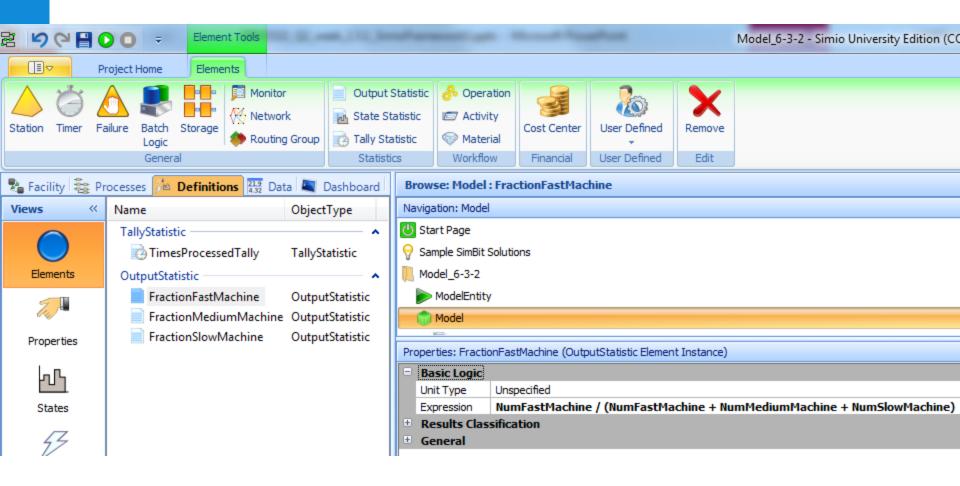



Model with objects

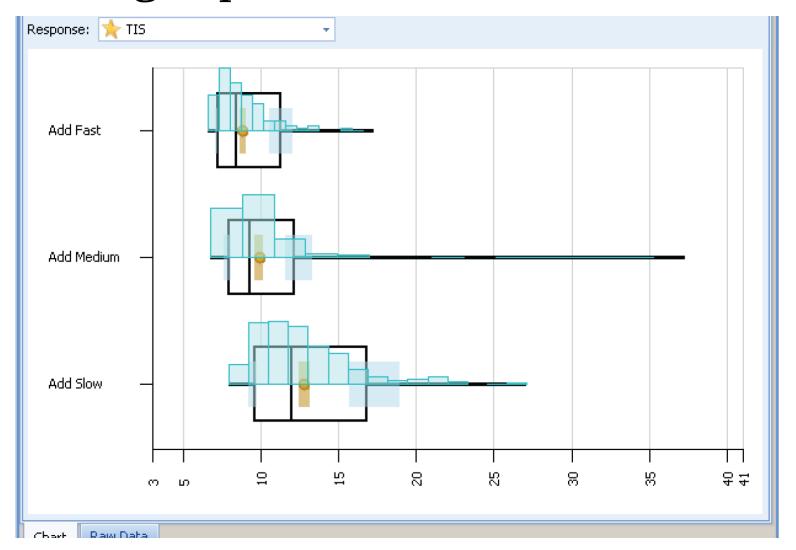



Detailed process definitions

Process description

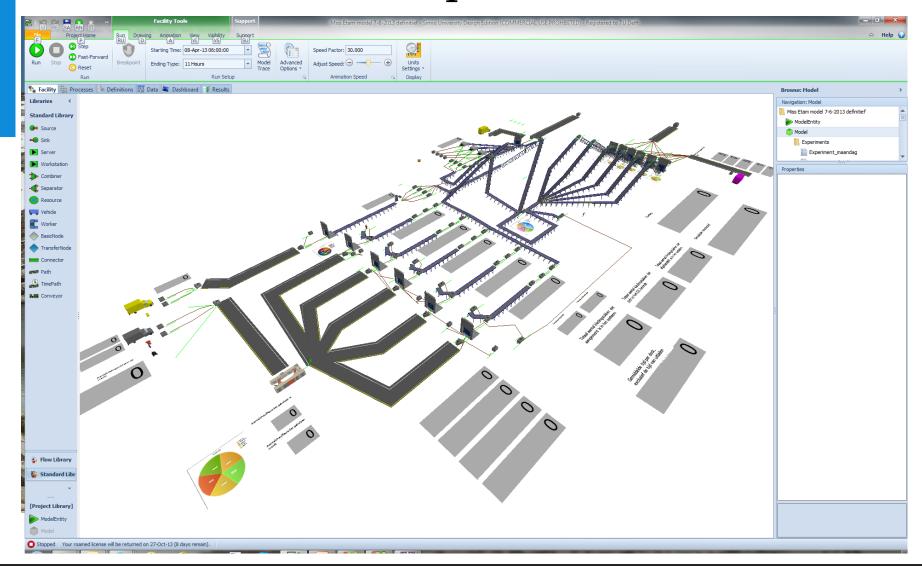

Logic for the different steps

Modern interface



Strong experimentation and results

		1		_								
Average N	Minimum	Maximum	Half Width									
								Scenario 1				
Object Type		Object Name	^	Data Source A	Category ^	Data Item A	Statistic • T	Average	Minimum	Maximum	Half Width	
Model		Model		FractionFastMachine	UserSpecified	Output	Value	0.4034	0.3947	0.4111	0.0020	
				FractionMediumMac	UserSpecified	Output	Value	0.3443	0.3428	0.3459	0.0005	
				FractionSlowMachine	UserSpecified	Output	Value	0.2523	0.2455	0.2593	0.0018	
				TimesProcessedTally	UserSpecified	Tally	Average	1.3506	1.3402	1.3582	0.0026	
							Maximum	8.2105	7.0000	12.0000	0.5921	
							Observations	,617.7368	.412.0000	.,876.0000	57.5259	
ModelEntity		PCB		[Population]	Content	NumberInSystem	Average	93.7845	71.5532	135.0963	7.7030	
							Maximum	211.1053	154.0000	320.0000	21.2719	
					FlowTime	TimeInSystem	Average (Hours)	9.3468	7.1596	13.4189	0.7635	
							Maximum (Hours)	116.4709	79.3215	156.1938	12.3032	
							Minimum (Hours)	0.2411	0.2303	0.2556	0.0035	
					Throughput	NumberCreated	Total	,647.2105	469.0000	.,922.0000	59.4742	
						NumberDestroyed	Total	,617.7368	.412.0000	.,876.0000	57.5259	
Server		FinePitchFast		[Resource]	Capacity	ScheduledUtilization	Percent	81.6059	80.0452	83.2394	0.4092	
						UnitsAllocated	Total	,751.2105	.533.0000	.,985.0000	57.9579	
						UnitsScheduled	Average	1.0000	1.0000	1.0000	0.0000	
							Maximum	1.0000	1.0000	1.0000	0.0000	
						UnitsUtilized	Average	0.8161	0.8005	0.8324	0.0041	
							Maximum	1.0000	1.0000	1.0000	0.0000	
			ResourceState		FailedTime	Average (Hours)	0.4983	0.4434	0.5176	0.0099		
							Occurrences	614.2632	560.0000	677.0000	13.5513	
							Percent	14.1693	12.6455	16.0787	0.4134	
							Total (Hours)	306.0564	273.1424	347.2997	8.9297	
						ProcessingTime	Average (Hours)	2.0998	1.9407	2.3538	0.0490	
							Occurrences	841.1579	757.0000	905.0000	18.3092	
							Percent	81.6059	80.0452	83.2394	0.4092	



Strong experimentation and results

Extended models possible

10.

Salabim

Salabim

- Like DSOL, based on a 3GL, but in this case Python
- Relative young package
- Python is seen as an ideal 'prototyping' package
- But no good simulation package available (SimPy is very basic)
- Process interaction (locality of object) as the basis
- Just queueing systems
- Still very basic, but showing potential for the future

Basic concepts (1)

Generation of entities:

```
class CustomerGenerator(sim.Component):
    def process(self):
        while True:
            Customer()
            yield self.hold(sim.Uniform(5, 15).sample())
```

Customer process:

```
class Customer(sim.Component):
    def process(self):
        self.enter(waitingline)
        if clerk.ispassive():
            clerk.activate()
        yield self.passivate()
```


Basic concepts (2)

Resource (server) process:

```
class Clerk(sim.Component):
    def process(self):
        while True:
        while len(waitingline) == 0:
            yield self.passivate()
        self.customer = waitingline.pop()
        yield self.hold(30)
        self.customer.activate()
```

Main process:

```
env = sim.Environment(trace=True)
CustomerGenerator()
clerk = Clerk()
waitingline = sim.Queue('waitingline')
```


Basic concepts (3)

Experimental design:

```
env.run(till=50)
print()
waitingline.print_statistics()
```

So all very bare and basic...

Animation is present, but fully DIY

The interesting part is the fact that it uses process interaction

synchronization between processes?

11.

Simulation Software Comparison and Selection

Comparison (1)

	Arena	Plant Sim	DSOL/pydsol	
Locality	Time (Flow)	Time (Flow)	Time	
Formalisms	Discrete	Discrete	Discrete, Cont, Agent	
Hierarchy	Yes	Yes	Partly, programmed	
Inheritance	No	Yes	Yes	
Distribution	No	Yes	Yes, programmed	
User coding	No (VBA)	Yes, script	100% Java/Python	
Programming	No	Partly, script	Yes	
2D animation	Easy	Easy	Yes, programmed	
3D animation	Yes, difficult	Yes	Partly, libraries	
Interaction	Yes	Yes	Yes, programmed	
Optimization	OptQuest	Yes	Yes, libraries	
Price	\$\$	\$\$\$	Free	
Vendor	Rockwell Software	Siemens	None	

Comparison (2)

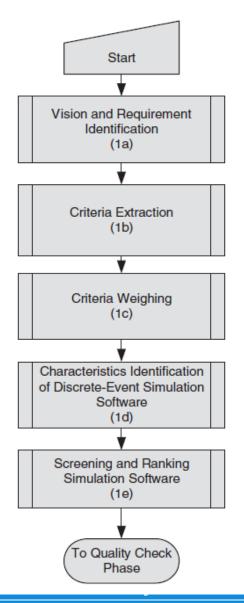
	AutoMod	ED	AnyLogic	Simio	
Locality	Time	Time (Flow)	Time (Flow)	Time (Flow)	
Formalisms	Discrete	Discrete	DES, SD, Agent	Discrete	
Hierarchy	No	Yes	Yes	Yes	
Inheritance	No	Yes	Yes	Yes	
Distribution	No	Yes	Possible	No	
User coding	Script	4D-script	Yes, Java	Yes, Process	
Programming	No	No	Yes, Java	No	
2D animation	Easy	Easy	Easy	Easy	
3D animation	Easy	Easy	Yes	Easy, Google 3D	
Interaction	Yes, libraries	Yes	Yes, Java	Yes, some	
Optimization	AutoStat	OptQuest	OptQuest	OptQuest	
Price	\$\$	\$\$	\$\$	\$\$	
Vendor	Brooks	InControl	AnyLogic	Simio	

Comparison (3)

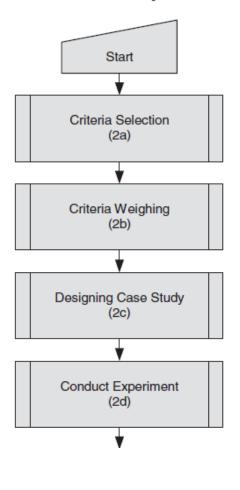
	ExtendSim	Salabim	SimPy
Locality	Time (Flow)	Object	Time
Formalisms	Discrete Rate/DES	Discrete	Discrete
Hierarchy	Yes	No	No
Inheritance	No	By user	By user
Distribution	No	No	No
User coding	No	Full python	Full python
Programming	No	Full python	Full python
2D animation	Yes	Very basic	No
3D animation	Partly	No	No
Interaction	Yes, many	No, python	No, python
Optimization	Built-in	No, libraries	No, libraries
Price	\$\$	Free	Free
Vendor	Imagine That Inc.	None	None

Comparison (4)

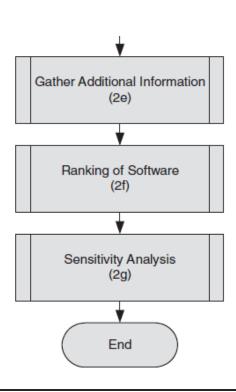
	Jaamsim	MESA	NetLogo
Orientation	Time (Flow)	State	State
Formalisms	Discrete	Agent	Agent
Hierarchy	Yes	No	No
Inheritance	Partly	Programmed	Yes
Distribution	No	No	No
User coding	Yes, Java	Full python	Yes, NetLogo
Programming	Yes, Java	Full python	Java Extensions API
2D animation	Yes	Basic	Yes
3D animation	Yes	No	Yes, NetLogo 3D
Interaction	Yes	No, python	Yes, UI
Optimization	No, libraries	No, libraries	No, external
Price	Free	Free	Free
Vendor	None	None	None



Simulation comparisons


- https://www.informs.org/ORMS-Today/Public-Articles/October-Volume-38-Number-5/Software-Survey-Simulation-Back-to-thefuture
- http://www.orms-today.org/surveys/Simulation/Simulation.html
- And look on http://www.informs-sim.org for simulation software tutorials at the Winter Simulation Conferences

Simulation software selection


Phase I: Feature Check

Phase II: Quality Check

Source: Tewoldeberhan et al, 2010

Simulation software selection: Example criteria

Source: Tewoldeberhan et al, 2010

Model Development and Input

- Graphical model building
- Merging models
- Conditional routing
- Statistical distribution
- Queuing policies
- Reuse of user defined modules
- Built-in functions
- Link to other languages
- Coding tools and utilities
- Input from text files
- Input from database
- Input from spreadsheets
- Automatic data collection
- Batch input mode
- Interactive input mode
- Random number generators
- Program generator

Animation

- Integration of animation
- Library of icons
- Screen layout
- Concurrent animation mode
- Animation on/off feature
- 3D animation
- Animation development feature

Output

- Standard report generation
- Report customization
- Integration with statistical packages
- Integration with other simulation packages
- Exporting data to database
- Exporting data to spreadsheets
- Exporting data to text files or word processors
- Optimization
- Output analysis feature
- Business graphics

Simulation software selection: Example result

Source: Tewoldeberhan et al, 2010

Criteria	Weight	Package	Package	Package	Package	Package
		Α	В	С	D	E
Vendor	5.6	3.00	2.00	2.67	3.00	2.33
Model development & input	9.5	2.71	2.57	2.71	2.00	2.43
Execution	7.6	2.00	2.33	2.33	2.00	2.00
Animation	6.3	2.67	2.33	1.33	2.67	1.00
Testing & efficiency	7.6	2.38	2.38	2.50	2.00	1.75
Output	6.6	2.33	1.67	2.33	2.00	2.67
Experimental design	5.9	3.00	2.00	2.00	3.00	2.00
User	5.6	2.00	1.50	2.50	2.00	3.00
Total		136.9	117.3	127.1	125.1	117.1
Rank		1	4	2	3	4

12.

Any Questions for the Term Papers?

