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a b s t r a c t

Cyber-physical systems (CPSs) are the synergy of the physical world with the cyber world. CPSs will bring
about unprecedented applications that will enable the monitoring and controlling of the physical envi-
ronments. CPSs’ further progress necessitates the availability of co-simulation platforms that can capture
both the physical and the communication dynamics. In this paper, we build on our previous experiences
to build a comprehensive co-simulation platform for CPSs. The newly developed platform enjoys several
indispensable features. In the process of discussing the steps to engineer the platform, we present several
design alternatives that might prove beneficial in other future tools that combine different simulator
environments. We discuss thoroughly why we rule in or rule out each of such alternatives. Then, we val-
idate the developed platform to make sure it works correctly. Finally, we present demonstrative exam-
ples showing the capabilities of the platform.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Cyber-physical systems (CPSs) are the synergy of the physical
world with the cyber world. The ultimate objective is to attain a
better quality of life by monitoring, affecting, and controlling the
physical world within which we live using the capabilities of the
cyber world. These capabilities encompass sensing, computation,
communication, and actuation tasks. CPSs applications are tremen-
dous and include hazardous and remote explorations; aerospace
and automotive control; power grid control; and industrial auto-
mation [1]. For CPSs to attain its promising objective of enhancing
the quality of life, they must be dependable, fault-tolerant, effec-
tive, and efficient.

CPSs are generally complex to study, analyze, and design be-
cause of the following two main reasons:

� CPSs combine two different domains: physical and digital.
Whereas the former is often expressed in terms of continuous
mathematics, the latter is usually modeled by discrete mathe-
matics. Although, some physical systems, especially engineered
ones, may be modeled in discrete forms, the time scales are dif-
ferent between the models of physical systems and those of
cyber counterparts.
� CPSs are often intermittent and usually communicate over het-

erogeneous and nondeterministic networks. These factors call
for probabilistic models that are usually hard to solve.
ll rights reserved.
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These two reasons render any mathematical analyses of CPSs
intricate. When analytical approaches fall far short of being ade-
quate in studying complex systems, simulation arises as a powerful
problem-solving technique for studying and analyzing such com-
plex systems [2]. Therefore, CPSs’ realization and further progress
will critically depend on the existence of appropriate simulation
tools [3]. Moreover, due to the intrinsic tight coupling between
the physical and the cyber worlds, CPSs necessitate co-simulation
[1], which dictates the joint and concurrent simulation of the
two domains.

In this paper, we build on our previous experiences to build a
comprehensive co-simulation platform for CPSs. The newly devel-
oped platform integrates ns-2, a network simulator, and Modelica,
a modeling language for large-scale, complex physical systems. Be-
cause each island, ns-2 or Modelica, has its own notion of time,
synchronization between their simulated times arises as a major is-
sue. As it will be elaborated upon in the coming sections, the way
to achieve the synchronization significantly impacts the capabili-
ties of a given co-simulation tool. Introducing a delicate solution
for the synchronization issue, we here address the limitations of
and improve over the previously developed co-simulation tools,
including our own older version [4,1]. With the proposed solution,
the new platform is now capable of supporting asynchronous
events inside physical systems, a feature that was missing in most
of previous tools. Such added feature is essential and is not merely
cosmetic. With the new platform, all physical systems-related
functionalities—e.g., scheduling sampling events and sending pack-
ets—are taken care of inside Modelica. On the other hand, net-
works-related functionalities are taken care of inside ns-2. This
separation has two advantages. First, it is the natural way that
aligns with the vital principles of modular design [5]. Second, it
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is necessary for the modeling of event-based sampling [6,7] arising
in several real-life examples, e.g., sampling when a physical quan-
tity exceeds a threshold, sampling when a physical quantity
changes by a specific amount, or sampling in response to asynchro-
nous events whose times are not known beforehand [6,7].

After validating the platform for its correct operation, we use it
to simulate two representative examples: one in industrial auto-
mation and one in power grid. These two examples are at the heart
of CPSs’ real-life applications.

In summary, the newly developed platform enjoys the following
indispensable features:

1. It relies on the two well-engineered, credible, and well-serviced
tools: ns-2 and Modelica.

2. It can simulate fine-grained and detailed dynamics of commu-
nication networks.

3. It utilizes the availability of existent physical systems models
for various domains, e.g., mechanical, electrical and electronic,
hydraulic, thermal, control, and electric power systems.

4. It is capable of simulating asynchronous events inside the phys-
ical systems and inside the cyber systems.

The rest of this paper is structured as follows. Section 2 surveys
the related co-simulation platforms for CPSs, including our own
older version that we improve upon in this paper. In Section 3,
we present the implementation details of the older version and
discuss its limitations. Section 4 discusses the full implementation
details of the newer comprehensive platform. In Section 5, we
present the techniques that we followed to verify the correct oper-
ation of the newly developed tool. Section 6 presents several
demonstrative and interesting examples illustrating the capabili-
ties of the new tool. Finally, Section 7 concludes the paper.

2. Related work

Since advances in the design and synthesis of CPSs rely eventu-
ally on analyzing the simulation-generated data, the co-simulation
platform must accurately capture the actual behavior of both phys-
ical and communication dynamics. Fine-grained dynamics are re-
quired because simulation-generated data can be only as good as
the simulation models are. So, if the physical or communication
models deviate from the actual real-life systems, output data can
be misleading and consequently resulting in erroneous decision
making during the design stage.

Although an intuitive way is to engineer a new tool from scratch
that would contain building modules for physical components and
others for communication components, a good practice and a basic
principle in engineering is to avoid reinventing the wheel and to
rely on well-developed ideas as much as possible. This latter ap-
proach has been pursued almost in all research efforts that tar-
geted the simulation of CPSs; see for example [8–10,1]. However,
these co-simulation platforms, which adapt already existent tools,
have diverged into three different avenues [1]:

1. Extending physical systems simulators to also simulate the
events and dynamics of communication networks. Examples
include the original TrueTime [8], which is Simulink� based;
the newer TrueTime generations [11–13], which are all Model-
ica based; and the VisualSense, which is an extension of the
Ptolemy framework [14]. All these tools have support for only
local-area-networks simulations. Specifically, they allow the
simulation of only the physical and the medium-access layer.
This limitation inhibits each tool’s applicability to more general
networks that incorporate higher-layer network protocols—e.g.,
routing, transport, and application protocols—and geographi-
cally distributed networks, i.e., WANs. Providing support for
general network settings can be a formidable task because such
higher-protocols, in general, utilize complex algorithms that are
distributed in nature and encompass multi-hop nodes [1]. Also,
these tools usually abstract away the network into stochastic-
delay models, and such they lack the fine-grained simulations
of network dynamics (a sought-for aim for the reasons men-
tioned at the beginning of this section).

2. Extending a network simulator to support physical systems
simulations. Examples include the Agent/Plant [10] and its
successors [15]. The problem with such approach is that phys-
ical dynamics and control algorithms need to be modeled
explicitly by differential–algebraic equations (DAEs) that are
to be solved within the simulation script or via a call to an out-
side utility, e.g., Matlab. Except for relatively simple systems,
this process can be a daunting task.

3. Marrying a full-blown network simulator with a full-blown
physical systems simulator. Examples include the ADEVS/ns-
2 integrated tool [9], the Simulink�/ns-2 combined tools
[16,17], and the Modelica/ns-2 integrated tool [1].

In CPSs, there are two radically different realms (i.e., the phys-
ical and cyber worlds) with each has its own specialized and ma-
ture simulation tools. Therefore, it is conspicuously wise to
combine two domain-specific tools into one that utilizes the best
features of individual simulators. The tool in [9] requires both ex-
plicit modeling of physical systems with DAEs, and dividing a sys-
tem into continuous processes and discrete ones. The ADEVS/ns-2
can therefore be thought of as an enhanced version of the Agent/
Plant. However, it still lacks the ease of modular modeling found
in, say, Modelica or Simulink�. The tool presented in [16] exploits
exactly the same synchronization mechanism as that of our previ-
ous tool [1]. Therefore, it suffers from the same limitations as of
our older tool: no support for asynchronous events inside physical
systems (elaboration on this point is discussed in Section 3). More-
over, the tool requires that round-trip delays (or the total control
loop delays) be shorter than sampling periods, which can be a valid
assumption in some scenarios on a scale of local-area-networks
but this assumption does not usually hold in wide-area settings,
e.g., the Internet. The co-simulation platform presented in [17] pro-
vides a GUI to facilitate construction of wireless networks in ns-2

and tuning of controller’s parameters. The platform also improves
on the wireless signal propagation model existing in ns-2.
Although the paper mentioned that it corrected the synchroniza-
tion mechanism over previous versions, insufficient details are
provided about the new synchronization solution. All what is men-
tioned is that Simulink� controls the synchronization by instruct-
ing ns-2 to advance to a given time and that Simulink� then
advances one time-step. There arise two concerns here: it is unclear
what ‘one time-step’ means, and it is unclear how to deal with the
situation if ns-2 has data to deliver to Simulink� before the given
time ordained by Simulink�. In general, in all previously men-
tioned tools, no attempts were made to validate the correctness
of the presented tool.

In this paper, we improve on the Modelica/ns-2 tool that we
previously built [1] by targeting its shortcomings to provide a more
comprehensive co-simulation platform for CPSs. The differences
between the older and the newer versions are detailed in next
two sections. We here summarize the reasons of choosing ns-2

and Modelica for the simulation of physical systems dynamics
and of communication networks dynamics, respectively [1]. For
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the network side, we choose ns-2 among other alternatives
because

� ns-2 [18] is a free, widespread packet-level simulator.
� ns-2 simulates the exact dynamics and events of individual

packets while traversing network elements, e.g., communica-
tion links and routers.
� ns-2 supports various routing, transport, application protocols.
� ns-2 is capable of simulating wired, wireless, local- and wide-

area networks.
� ns-2 is evolvable by exposing well-defined APIs that greatly

facilitate developing new protocols and algorithms.

As for the physical systems side, we choose Modelica among
other candidates because

� Modelica [19] is a modeling language for large-scale complex
physical systems.
� Modelica is an object-oriented language and supports model

construction and reusability.
� Modelica allows acausal modeling.
� Several ready Modelica libraries are available for different

domains, e.g., mechanical, electrical and electronic, hydraulic,
thermal, control, and electric power systems.
� Several commercial and open source simulation environments

are available for Modelica.

3. An older version of the Modelica/ns-2 co-simulation
platform

In [4,1], we presented our co-simulation tool that combined ns-
2 and Modelica. In this section, we review the implementation de-
tails and the limitation of that tool.
3.1. Implementation details of the older version

Modelica and ns-2 are run as two separate processes. The com-
munication between the two processes is achieved via UNIX
named pipes. In general, when combining two or more simulators,
where each runs as a separate process, to form one hybrid simula-
tor, the major issue becomes how to synchronize their simulated
clocks. To illustrate, consider the following example of only two
simulators, S1 and S2. Both S1 and S2 start at simulation time t0

and at simulation time t1, S1 needs to convey data to S2. Intuitively,
we cannot let S1 and S2 freely run because it might happen that S2

passes t1 before S1, which will lead to erroneous operation of and
will incapacitate the combined tool. Next, we discuss three mech-
anisms to synchronize S1 and S2.
3.1.1. Predetermined communication time instants
The race condition between S1 and S2 can be solved straightfor-

ward if the time instant t1 is predetermined and known before-
hand. In such case, we allow S1 and S2 run freely until t1, at
which point they both pause, they exchange data, and then they re-
sume execution until the next predetermined communication time
instant t2, and so on. However, in realistic simulations, not all time
instants at which communication between the two simulators
must occur are often known a priori. For example, in most cases,
the communication between the two simulators is triggered by
internal events inside one or both simulators depending on meet-
ing some conditions, which might be stochastic or even determin-
istic, but are not known a priori.
3.1.2. Real-time synchronization
Several simulators, including ns-2 and Modelica, possess the

capability of synchronizing their simulated clocks with real-life
time, i.e., the wall-clock time. If the two simulators have this
real-time synchronization feature, the race condition and synchro-
nization between the two simulators is therefore completely re-
solved because both simulators will advance at the same rate
(the wall-clock rate) and they will never outpace one another.
However, this functionality is still unimplemented in some simula-
tors and is still experimental and correct operation is not guaran-
teed in others, e.g., ns-2 [20,17]. Another disadvantage of real-
time synchronization is that simulations will progress at the pace
of real-life clocks and thus will take long time to finish for long-
time simulations, i.e., an hour-long simulation will take exactly
one real hour to finish no matter how powerful the hardware on
which it is running is. Consequently, this collapses a major advan-
tage of simulation—the ability to compress long time into a very
shorter period [21].

3.1.3. Synchronization in our previous tool
In general, achieving synchronization between distributed sim-

ulators is a challenging issue. Therefore, in [4,1], we relaxed some
constraints on the requirements the combined tool must meet. In
particular, while the tool fully supports communication events be-
tween ns-2 and Modelica that depend on ns-2’s internal events,
those communication events depending on internal events inside
Modelica are not supported.

To elaborate, consider the following example. Suppose that this
tool is used to simulate the simplest form of a CPS consisting of a
single physical system and a remote controller such as the one in
Fig. 1. The sensor samples the values of physical quantities, writes
them in a packet, and sends the packet over the network to the
controller. The controller examines the received sample to gener-
ate a control signal that is then sent over the network to the actu-
ator. When we first developed the tool, we based it on the
legitimate assumptions that are often assumed in CPSs research
realm: the plant is time driven (and most often, the sampling times
are uniform) and that the controller is event driven and its compu-
tation time is negligible or constant; see for example [23] and the
references therein. Due to such assumptions, the design methodol-
ogy was to enslave Modelica by ns-2 in that ns-2 controls and
determines all time instants at which the communication between
Modelica and ns-2 should occur. So, in reference to the example of
Fig. 1,

� The sampling events of the plant ought to be dealt with inside
ns-2 not inside Modelica. The sampling intervals can be regular
or irregular. However, the next sampling time cannot depend on
some quantity or variable inside a Modelica model (e.g., sam-
pling a physical quantity and sending a packet once a Modelica
variable crosses some threshold).
� The computation delay of a controller is assumed to be zero.

Then, when ns-2 delivers the packet carrying the sampled data
to the controller modeled inside Modelica, ns-2 collects the
output of the controller instantly. Notice that the tool can still
support the case if the controller has a delay independent of
any Modelica variable, for example, a known constant delay
or a delay that changes based on a predefined trend. This delay
should be ‘‘coded’’ inside ns-2 though.

That is, ns-2 determines on behalf of Modelica the time in-
stances of packet transmissions originating from Modelica includ-
ing sensor samples and controller commands. Notice that the
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Fig. 1. A CPS with one controlled system (a.k.a. plant) and one controller. Both the sensor and the actuator are co-located at the plant site. Figure is adopted from [1].
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opposite alternative, i.e., enslaving ns-2 inside Modelica, was ru-
led out because if Modelica were to control the communication
events between the two simulators, the communication between
Modelica and ns-2 could not depend on internal events inside
ns-2. In turn, unpredictability and nondeterminisim of communi-
cation networks would be eliminated and unsupported by such de-
sign choice. In the adopted choice, on the other hand, the
unpredictability of physical systems is unsupported. We opted to
support nondeterminisim in networks over nondeterminisim in
physical systems for the following two reasons.

1. The time instants of when to deliver data from Modelica to ns-

2 (e.g., sampling a plant and collecting a control signal) are
often assumed predictable and can be coded inside ns-2.

2. In general, the time instants of when data needs to be delivered
from ns-2 to Modelica (e.g., arrival of packets) are unpredict-
able due to random delays, presence or absence of cross traffic,
uncontrolled losses that the simulated packets incur.

To make the inter-simulator communication feasible, the fol-
lowing detailed steps are executed. It is realized that the flow of
data between Modelica and ns-2 occurs in both directions: data
flows from Modelica to ns-2 and vice versa. When data is to be
sent from ns-2 to Modelica, we refer to this process by a write
event (using the ns-2 side convention). Conversely, a read event
is when data is sent from Modelica to ns-2; see Fig. 2.

1. Without loss of generality, we assume that both Modelica and
ns-2 start from a common time, ti = t0.

2. While Modelica is pausing at ti, ns-2 runs until the time of the
first event that mandates communication with Modelica,
ti+1 P ti.

3. ns-2 executes the respective event, it pauses at ti+1, and it
instructs Modelica to run until ti+1. In which case
� If the event is a read operation, ns-2 instructs Modelica to

write to the named pipe. Then, ns-2 reads the data.
� If the event is a write operation, ns-2 instructs Modelica to

read from a named pipe.
4. Steps 2 and 3 are then repeated with ti = ti+1 until the end of

simulation. These steps are illustrated in Fig. 3.
Read

Write

Control

Modelicans−2

Fig. 2. The read and the write operations between Modelica and ns-2.
The simulation time of ns-2 is always leading that of Modelica.
Note that when ns-2 is progressing in time (i.e., running), Model-
ica is pausing; and when Modelica is progressing, ns-2 is pausing.
So, at a given time either ns-2 or Modelica is running and the
other is pausing. With this mechanism, it can be thought that while
Modelica is pausing, ns-2 is exploring its way searching for events
that require communication with Modelica. Modelica and ns-2

pausing mechanism is achieved by blocking reading from an empty
named pipe; see Fig. 2.

3.2. Limitation of the older version

Because ns-2 determines the communication times between
the two simulators, Modelica cannot determine when to deliver
data to ns-2 and it is that ns-2 that determines on behalf of
Modelica when it should communicate with ns-2. Therefore,
sending data between Modelica and ns-2 in response to events
generated inside Modelica is not supported. That is, aperiodic con-
trol and alarm signals that are generated in response to events trig-
gered exclusively inside the physical system (i.e., inside Modelica)
are not accounted for. The same synchronization methodology we
implemented in [1] was also adopted in [16]. On the contrary, in
[17], the synchronization was achieved via enslaving ns-2 by
Simulink�.

Although the tool in [1] provided a very general tool that is suf-
ficient to simulate myriad of real-life setups, there is still a need for
a more comprehensive tool that addresses all such limitations.
4. A new comprehensive tool

In this paper, we improve the previous tool [1] by giving it the
ability to respond to internal asynchronous events inside Modelica,
for example, sending of packets that are not necessarily determin-
istic from the ns-2 point of view. In this section, we present the
implementation details and the enhancements of this tool. First,
ns-2 is an event-driven simulator where it keeps future events
in an appropriate data structure, which is called the Scheduler.
Additionally, ns-2 exposes well-defined APIs to access and possi-
bly to manipulate the Scheduler, e.g., obtaining the next future
event and deleting and inserting new events manually.
4.1. A preliminary observation

Suppose that, similar to ns-2, we have also access to Modelica’s
Scheduler. The obvious solution would have been as follows.

1. We start with both simulators pausing at a common time ti.
2. We consult both simulators’ Schedulers, to retrieve the time, tn

f ,
of the earliest future event among all events already scheduled
inside ns-2, and the time, tM

f , of the earliest future event inside
Modelica.

3. During the time interval ti;min tn
f ; t

M
f

� �h �
, we are certain that

the two simulators need not to communicate. So, we let both
simulators run freely until tiþ1 ¼min tn

f ; t
M
f

� �
and pause there.



Fig. 3. Illustration of Modelica and ns-2 pausing and progressing steps. Circled numbers correspond to steps in text.
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4. We let the simulator having the earliest future event execute its
event only and pause there afterward.

5. If such event requires one simulator to deliver or obtain data
from the other, we facilitate their communication through the
named pipe. Both simulators are now pausing at ti+1 again.

6. We repeat steps 2–5 until the end of simulation with ti = ti+1.

Note that after processing the event at tiþ1 ¼min tn
f ; t

M
f

� �
, we

next execute step 2 and do not progress to time

t0 ¼max tn
f ; t

M
f

� �
because it might happen that the event that

we just processed (i.e., at ti+1) has triggered new events inside

one or both simulators during the interval min tn
f ; t

M
f

� �
;

h

max tn
f ; t

M
f

� �
�. These steps are illustrated in Fig. 4.

Note that updating the Schedulers in both simulators occurs
implicitly without our intervention. We only intervene in the stop-
ping and restarting process.

The only obstruction to realize this neat solution is that we
have no internal access to Dymola, the Modelica simulation
environment we are using, and its Scheduler. In the next
subsection, we explain how we work around this problem. The
Fig. 4. Illustration of Modelica and ns-2 pausing and progre
synchronization mechanism that is just mentioned was imple-
mented in [9] where access to both ns-2 and adevs Schedulers
is feasible.

4.2. Synchronization in the new tool

Because we have access only to ns-2’s Scheduler, we enslave
Modelica with ns-2 as was the case in our older tool. However, in-
stead of allowing ns-2 to advance to the imminent event where
the two simulators have to communicate and then to instruct
Modelica to progress to that event time, we attain the synchroniza-
tion as follows.

1. We start with both simulators pausing at a common time ti.
2. We consult the ns-2’ Scheduler, to retrieve the time, tn

f , of the
earliest future event.

3. While ns-2 is pausing at ti, Modelica is instructed to progress to
tn

f . Then, there arise two cases:
� During the time interval ti; tn

f

h �
, Modelica encounters no

events that require communication with ns-2. Thus, Model-
ica reaches tn

f . Thereupon, ns-2 proceeds to time ti ¼ tn
f , exe-

cutes the respective event, and pauses there.
ssing steps. Circled numbers correspond to steps in text.



Fig. 5. Illustration of Modelica and ns-2 pausing and progressing steps. Circled numbers correspond to steps in text.
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Fig. 6. The abstract view (i.e., the interface) of the Network model inside Modelica.
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� During the time interval ti; tn
f

h �
, Modelica has to communi-

cate with ns-2 at least once. Modelica runs until the time
tM where it first needs to deliver data to ns-2, it executes

this event, and it pauses there ti 6 tM
6 tn

f

� �
. Then, ns-2

proceeds to ti = tM, obtains data from Modelica, and pauses
at ti.

In both cases, Modelica informs ns-2 whether it progressed to

tn
f without interruptions or it paused at tM 2 ti; tn

f

h �
for an event

requiring communication with ns-2.
4. We repeat steps 2 and 3 until the end of simulation. These steps

are illustrated in Fig. 5.

This scheme will not have any problem of missing any events
inside both Modelica and ns-2 because of two reasons:

� We always pause at every ns-2 event assuming it will require
communication with Modelica.
� Modelica runs ahead of ns-2 and it also pauses when executing

events that require communication with ns-2; see Fig. 5. So,
Modelica explores its way searching for events that require
communication with ns-2. When those events occur, Modelica
pauses and then ns-2 follows.

Having access to ns-2’s Scheduler has eliminated the need to
use other highly expensive mechanisms such as the one in [24]. A
synchronization solution based on [24] can be employed to sup-
port asynchronous events within Modelica. Such solution follows
along the same lines as the mechanism that was employed in the
older version with the following modification (refer to steps 1–4
in Section 3.1.3 and Fig. 3). In step 3, if Modelica encounters an
internal event that requires communication with ns-2 at time
tM 2 [ti, ti+1), Modelica pauses at tM. The state of ns-2 is rolled back
to ti and is then re-executed from ti to tM. The process then repeats.
This solution suffers from the following disadvantages. First, the
implementation of state saving, state restoration, and rollback and
re-execution in ns-2 can be complicated. Second, the overhead of
rollback and re-execution can be substantial. On the other hand,
our approach represents an elegant solution by not having ns-2

to run ahead of Modelica.
4.3. Implementation of the synchronization

We have implemented the steps above inside ns-2 and Model-
ica. Inside Modelica, We created a new model, called Network, that
embodies the necessary functionalities of pausing Modelica’s sim-
ulation time at a specific time instant, progressing Modelica’s sim-
ulation time to a given prescribed time instant, and
communicating with ns-2 to receive commands and to deliver
and receive data. The Network model is constructed as a MIMO
(multiple inputs and multiple outputs) block diagram. The data
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that is to be transported via network is fed into an input port;
whereas, the data that is to be received from network is connected
to an output port; see Fig. 6. As for the ns-2 side, we created a new
derived class that inherits from the calendar’s scheduler class [20].
The new class, called CPSsim, adapts ns-2’s default scheduler to
control the simulation steps of the combined tool (i.e., the above
pause-progress mechanism). Also, we created an application-level
ns-2 agent, called PhySys, that can take a role of any physical
world’s entity, e.g., a plant, a sensor, and actuator, or a controller.
The mapping between Modelica and ns-2, i.e., between Network

inputs and outputs and PhySys instances, is accomplished via
common ID numbers. Again, the communication between Modeli-
ca and ns-2 is facilitated via named pipes.
5. Validation of the new tool

In this section, we present the techniques that we followed to
make sure that the newly developed tool is working correctly. This
is a critical step because the tool combines two different and
relatively large simulation environments that must work not only
in harmony but in a correct manner. Although several books differ-
entiate between the meanings of the two terms validation and ver-
ification [21,25], we here use the two words interchangeably to
refer to the process of making sure the developed tool is working
correctly.

5.1. Extensive testing and debugging

Throughout the development process of the tool, we made sure
to verify the correctness of every submodule’s functionality. While
developing individual Modelica and ns-2 modules and functions,
we developed dummy programs that would interact with Modelica
or with ns-2 as it were the other party. In addition, we generated
synthetic inputs to feed into Modelica or ns-2 and we verified the
correct operation of the developed modules by comparing the
traces they generate to the traces generated by carrying out man-
ual hand simulations.

5.2. Formal validation

Although the above steps are necessary to finally produce a
credible tool, they are not sufficient. Here, we validate our tool
by comparing the operation of the complete tool to an analytical
solution and to an output produced by a ‘pure’ Modelica’s model
for the same simulation example. We emphasize that the intent
here is not to show the capabilities of the tool; rather, it is to verify
the tool’s correctness.

5.2.1. Setup
We consider the following network topology and parameters

for the simulation example; see Fig. 7. The plant and the controller
are interconnected via an intermediate router. The two links con-
necting the plant and the router and the controller and the router
are identical with each having capacity of 1 Mbps and propagation
delay of 1.2 ms. The plant and the controller exchange the same
packet sizes of 100 bytes each.
RouterPlant

1.2 Mbps / 1.2 ms 1.2 Mbps / 1.2 ms

Controller

Fig. 7. Network topology for the evaluation simulation example.
The plant is a first-order system [26] whose state x(t), input u(t)
and output y(t) are governed by

_xðtÞ ¼ axðtÞ þ buðtÞ
yðtÞ ¼ cxðtÞ:

�
ð1Þ

Moreover, the control law is a pure proportional controller with
gain k, i.e., k(r(t) � y(tk)), where y(tk) is the sampled plant output at
time tk and r(t) is the reference input that the plant is required to
follow. We choose the following specific values for the parameters
above: a = �1, b = 1, c = 1, and k = 2. The plant is sampled every
h = 0.01 s. and is excited with a sinusoidal reference input, r(t),
having amplitude 1, frequency 2 Hz, and phase 0.0 rad. The simu-
lation lasts for 2.5 s. Although this example might seem simple, it
contains all types of events that would unveil any possible errone-
ous operation of the tool, including multiple simultaneous events
occurring inside Modelica, multiple simultaneous events occurring
inside ns-2, and multiple simultaneous events occurring inside
Modelica and ns-2 at once. On the other hand, such example en-
joys two features: it has a closed-form analytical solution, and it
fits within the capabilities and constraints of a physical systems
simulation environment, e.g., Modelica.

5.2.2. Analytical solution
Since the incorporation of the network in feedback loop intro-

duces time delays (1) becomes (note that c = 1)

_xðtÞ ¼ axðtÞ þ buðt � scpÞ
uðtÞ ¼ kðrðtÞ � xðt � spcÞÞ;

�
ð2Þ

where scp and spc are the plant-to-controller and the controller-to-
plant one-way delays, respectively. Combining the two equations in
(2) yields

_xðtÞ ¼ axðtÞ þ bkðrðt � sÞ � xðt � sÞÞ; ð3Þ

where s = spc + scp is the round-trip delay between the plant and
controller. Note that reference input r(t) has been deliberately
shifted in time by amount of spc to facilitate the analysis. Also, note
that s in our experiment setup is constant and equals 8 ms. The
sampled system of (3) at the sampling times, tk, is given by [27]

_xðtkþ1Þ ¼ eahxðtkÞ þ
b
a
ðeaðh�sÞ � 1ÞuðtkÞ þ

b
a
ðeah

� eaðh�sÞÞuðtk�1Þ; ð4Þ

where u(tk) = k(r(tk) � x(tk)).

5.2.3. Models
We constructed the models of the networked system given in

(1) using our tool and Modelica; see Fig. 8. In Modelica, the net-
work is modeled using two fixed-delay modules P2CDelay and
C2PDelay. Again, note that the one-way delay form the plant to
the controller is 4 ms and it is the same for the delay from the con-
troller to the plant. The deliberate delay, spc, that is introduced in
r(t) in (3) is accomplished by introducing a lagging phase shift in
the sinusoidal input of amount 2pfspc, where f is the frequency of
r(t), i.e., 2 Hz.

5.2.4. Comparison
Fig. 9 shows the plant response, y(t), as a function of time for the

model built using our tool, for the analytical solution according to
(4), and for the model built in Modelica. Although it seems that the
plant response in the three cases is identical, a closer look reveals
that there is an error between the one based on our tool and the
analytical one; see Fig. 10. Because the error is extremely small
(less than 1 � 10�8) and it occurs only for few points, we assert



Fig. 8. The two models corresponding to the networked system given in (1) using our tool (above) and Modelica (below).
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it is a mere rounding error and is not introduced by the tool. To
justify this, we also ascertain the error between the output pro-
duced with our tool and that produced using the Modelica-based
model not only for the response y(t) but also for the five points,
A to E, shown in Fig. 8. We indeed found that the error in the
response between every two corresponding points is identical
to zero, which strongly confirms our assertion. Therefore, we
hold an extreme confidence about the credibility of the newly
developed tool.
6. The new tool at work

In this section, we present examples illustrating the capabilities
and the features of the tool. We will show some excerpts of the re-
quired ns-2 code, figures of constructed Modelica models, and the
corresponding simulation results.
6.1. ns-2 code

The following code fragment demonstrates the steps to craft a
network simulation script in ns-2. The code elaborates exclusively
on the steps relevant to our tool, such as instantiating CPS objects,
configuring them, and linking them to models inside Modelica.
Code for other steps that are typical in any ns-2 code is suppressed
for brevity, e.g., building a network topology and configuring its
parameters. The code is made self-explanatory by inserting enough
comments, i.e., the lines starting with #.
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# 1. Create an instance of the Simulator Class.

set ns [new Simulator]

# 2. Use the newly developed Scheduler that is specific

# for CPS simulations.

$ns use-scheduler Calendar/CPSsim

# 3. Create network nodes; connect nodes via wireline or

# wireless links with desired parameters to form some

# topology; and create transport-layer protocols (e.g.,

# UDP, RTP, or TCP) with required parameters.

# 4. Create a CPS instance that takes a role of a plant.

# Note that the actual functionality will be implemented

# inside Modelica. So, the ‘plant’ here serves only as

# an object that relies data between ns-2 and Modelica

# but has no physical-systems functionality.

set plant [new Application/PhySys]

# 5. Tie/map the plant application agent to

# corresponding input and output ports of the ‘Network’

# module inside Modelica.

$ns ports-ids $plant 1 2

# 6. Associate a transport-layer protocol with the

# plant. Here, $transport is UDP agent that was created

# and tied to a given node; see step 3 above.

$plant attach-agent $transport

# 7. Configure the plant’s packets sizes.

plant set pktsize_ 100

# 8. Schedule some events.

$ns at 2.50 "finish"

$ns run

6.2. Example 1: an industrial automation system

The first example we present is a controlled flexible drive sys-
tem; see Fig. 11. This example arises as an adequate model for sev-
eral industrial automation systems, such as, assembly line robots,
conveyor belts, and other systems embedding rotating parts. Since
Fig. 11. A CPS example: fl
contemporary industrial automation systems practices depend on
distributed control, we assume that the plant is controlled by
two remote controllers as in Fig. 11. Communication between the
two controllers and the plant occurs over a switched Ethernet
LAN, which represents a point-to-point communication medium.
Such setup reflects the fact that the two controllers and the plant
are located in different rooms, floors, or even buildings. The net-
work topology and parameters are shown in Fig. 12. The band-
width of the link connecting the two switches is intentionally
chosen as a scaled down value of that of real-life Ethernet links,
e.g., 100 Mbps or 1 Gbps, to highlight the effect of sampling on
CPSs operation. Other than this, other network parameters are cho-
sen to reflect real-life settings.

The angle measurements are transported over the network to
the proportional (P) controller. The output from the P controller
and the speed measurements are transferred over the network to
the proportional-integral (PI) controller. Finally, the output of the
PI controller is fed back via the network into the plant and is used
to generate torque to drive a tandem of two inertia units. As shown
in Fig. 12, the angle measurements and the speed measurements
are multiplexed onto the same subset of links, while the P-to-PI
packet flow and the speed measurements are multiplexed onto
the same link. Although there is one control loop, these multiple
measurements and control flows can be regarded as multiple con-
trol loops that are closed over the network; see the Results para-
graph below. The objective in this whole system is to control the
load inertia to rotate in a constant angular speed of 2.0 rad/s during
the period [2,22] s.

Results. Fig. 13 shows the effect of sampling of the angle and the
speed measurements on the plant’s performance and stability.
When both quantities are sampled at the same uniform sampling
rate of 1000 sample/s, the system goes out of control. This occurs be-
cause the packets carrying both measurements traverse the same
bottleneck link connecting both switches. At a sampling rate of
1000 sample/s, packets form the two flows congest the link and thus
lead to increased delays and packet losses (results are not shown). In
turn, these two factors caused the instability. On the other hand, by
reducing only the sampling rate of the angle measurements to 250
sample/s and keeping the speed’s sampling rate at 1000 sample/s,
the system is brought into stability and it is performing well; see
Fig. 13. Although the problem of congestion has been solved in this
example statically, in [15], we proposed a dynamic congestion
control scheme that allocates the bandwidth among several
exible drive system.
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Fig. 14. A CPS example: electric power transmission system.
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competing CPSs control loops efficiently. Also, the effect of sharing
the same network infrastructure between control loops and data
flows was studied in [1].

6.3. Example 2: a smart power grid

The second example we present is a simple power system;
see Fig. 14. This example stresses the necessity for augmenting
the power grid with smartness by arming it with the ability to
sense, infer about itself and to self react and self heal in face
of faults.

The power grid is the largest physical system the man have ever
engineered [28]. Due to its indispensable role in modern society, it
must be dependable and reliable, efficient, and fault tolerant. There
have recently been special focus and enormous efforts to make the
grid smart.
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In our specific example, we show how a simple sensor-actuator
network can detect and isolate a fault in a power transmission line.
The power system consists of a steam or water turbine generator
and a transmission line connecting the generator via a transformer
to an infinite slack bus. The line is 430 km long. The currents at
both ends of the line are measured and are transported over a
WAN to a control logic. The control logic compares the measure-
ments of the three-phase currents and produces appropriate sig-
nals to open the circuit breaker switches at both ends of the line
if a fault is detected. The detection algorithm is based on the
time-averaged difference between the corresponding measure-
ments at both ends of the line: if the low-pass filtered difference
exceeds a given predefined threshold, which is 500 A in our case,
then a fault signal is fired [29]. Such asynchronous control signals
are also transported over the WAN. This scenario represents a sys-
tem where the control logic is not located near any end of the
transmission line. We assume that all communications take place
over a power line broadband network (BPL) [30] with all links have
bandwidth of 1 Mbps and propagation delays of 80 ms.

Results. At simulation time 0.5 s, a single-phase short circuit oc-
curs. Before the fault, the absolute difference between the current
measurements at both ends of the line is near zero; and is hence
the time-averaged value too; see Fig. 15. In this case, the circuit
breaker switch is closed. Once the fault strikes, most of the current
flowing from the right end does not reach the other end, and thus,
the absolute difference widens and its low-pass filtered value
tracks the increase in the absolute difference between the current
measurements at both ends. Once the time-averaged value exceeds
the threshold, the controller opens the two switches at both ends
and the fault is contained effectively. This whole scenario is illus-
trated in Figs. 15 and 16.

With aid of the sensor-actuator network, the line fault has been
quickly and accurately detected and isolated. This accuracy is
highly desirable in modern power systems. Other schemes com-
pletely eliminate the need of communication, rely only on one-
end measurements, and employ artificial neural networks to infer
line faults. However, such schemes attain less accuracy and suffer
from nonnegligible false positive and/or false negative rates [31].
6.4. Capabilities and versatility of the tool

All the sampling events in the previous two examples are
‘‘coded’’ inside the corresponding Modelica models. Additionally,
the asynchronous ‘open’ switch signal in Example 2 depended so-
lely on a Modelica variable that crossed a threshold; see Fig. 15.
These functionalities were not possible in the older platform.

Based on our architecture, the two simulation environments,
ns-2 and Modelica are loosely coupled where they communicate
via the named pipes. Therefore, changing some models in one side
does not affect the other as long as the common ID numbers do not
change; see end of Section 4. For example, the network topology
and parameters can be modified without affecting the Modelica
models. Also, changing the wireline network to a wireless network
will not affect the Modelica side. Likewise, changing or even
replacing Modelica models does not affect the associated ns-2

scripts. All of this is valid as long as the mappings between Model-
ica and ns-2 are preserved. Therefore, one can build the needed
physical models inside Modelica and then overlay the network
atop the physical system, or vice versa.
7. Conclusion

In this paper, we have presented a comprehensive co-simula-
tion platform for cyber-physical systems. After elaborating thor-
oughly on several design alternatives, we validated the newly
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developed tool. Moreover, we presented two examples to demon-
strate the features of the tool: one is in the domain of industrial
automation and another relates to the smart grid. Unlike previous
studies, we covered the issue of synchronization in much depth
suspecting it may prove beneficial in future tools that combine dif-
ferent simulator environments. Finally, we emphasize that we fo-
cused here on the more general and the harder case of CPSs
where the platform has to address a network of sensors and actu-
ators. However, the tool can be readily applicable to simulate a net-
work of sensors only where no synchronization between Modelica
and ns-2 is required.
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