DistNormal.java
package nl.tudelft.simulation.jstats.distributions;
import org.djutils.exceptions.Throw;
import nl.tudelft.simulation.jstats.math.ProbMath;
import nl.tudelft.simulation.jstats.streams.StreamInterface;
/**
* The Normal distribution. For more information on this distribution see
* <a href="https://mathworld.wolfram.com/NormalDistribution.html"> https://mathworld.wolfram.com/NormalDistribution.html </a>
* <p>
* Copyright (c) 2002-2024 Delft University of Technology, Jaffalaan 5, 2628 BX Delft, the Netherlands. All rights reserved. See
* for project information <a href="https://simulation.tudelft.nl/" target="_blank"> https://simulation.tudelft.nl</a>. The DSOL
* project is distributed under a three-clause BSD-style license, which can be found at
* <a href="https://https://simulation.tudelft.nl/dsol/docs/latest/license.html" target="_blank">
* https://https://simulation.tudelft.nl/dsol/docs/latest/license.html</a>.
* </p>
* @author <a href="https://www.linkedin.com/in/peterhmjacobs">Peter Jacobs </a>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
*/
public class DistNormal extends DistContinuous
{
/** */
private static final long serialVersionUID = 1L;
/** mu refers to the mean of the normal distribution. */
@SuppressWarnings("checkstyle:visibilitymodifier")
public double mu;
/** sigma refers to the standard deviation of the normal distribution. */
@SuppressWarnings("checkstyle:visibilitymodifier")
public double sigma;
/** nextNextGaussian is a helper attribute. */
private double nextNextGaussian;
/** haveNextNextGaussian is a helper attribute. */
@SuppressWarnings("checkstyle:visibilitymodifier")
protected boolean haveNextNextGaussian;
/**
* constructs a standard normal distribution with mu=0 and sigma=1. Models probabilities that are the sum of a large number
* of other probabilities by the virtue of the central limit theorem.
* @param stream StreamInterface; the random number stream
*/
public DistNormal(final StreamInterface stream)
{
super(stream);
this.mu = 0.0;
this.sigma = 1.0;
}
/**
* constructs a normal distribution with provided mu and sigma.
* @param stream StreamInterface; the random number stream
* @param mu double; the mean
* @param sigma double; the standard deviation
* @throws IllegalArgumentException when sigma <= 0
*/
public DistNormal(final StreamInterface stream, final double mu, final double sigma)
{
super(stream);
Throw.when(sigma <= 0.0, IllegalArgumentException.class, "Error Normal distribution - sigma<=0.0");
this.sigma = sigma;
this.mu = mu;
}
/** {@inheritDoc} */
@Override
public double draw()
{
return this.mu + this.sigma * nextGaussian();
}
/**
* returns the cumulative probability of the x-value.
* @param x double; the observation x
* @return double the cumulative probability
*/
public double getCumulativeProbability(final double x)
{
return 0.5 + 0.5 * ProbMath.erf((x - this.mu) / (Math.sqrt(2.0) * this.sigma));
}
/**
* returns the x-value of the given cumulativePropability.
* @param cumulativeProbability double; reflects cum prob
* @return double the inverse cumulative probability
*/
public double getInverseCumulativeProbability(final double cumulativeProbability)
{
return this.mu + this.sigma * Math.sqrt(2.0) * ProbMath.erfInv(2.0 * cumulativeProbability - 1.0);
}
/**
* Generates the next pseudorandom, Gaussian (normally) distributed double value, with mean 0.0 and standard deviation 1.0
* see section 3.4.1 of The Art of Computer Programming, Volume 2 by Donald Knuth.
* @return double the next Gaussian value
*/
protected synchronized double nextGaussian()
{
if (this.haveNextNextGaussian)
{
this.haveNextNextGaussian = false;
return this.nextNextGaussian;
}
double v1, v2, s;
do
{
v1 = 2 * this.stream.nextDouble() - 1; // between -1.0 and 1.0
v2 = 2 * this.stream.nextDouble() - 1; // between -1.0 and 1.0
s = v1 * v1 + v2 * v2;
}
while (s >= 1);
double norm = Math.sqrt(-2 * Math.log(s) / s);
this.nextNextGaussian = v2 * norm;
this.haveNextNextGaussian = true;
return v1 * norm;
}
/** {@inheritDoc} */
@Override
public double getProbabilityDensity(final double x)
{
return 1.0 / (this.sigma * Math.sqrt(2.0 * Math.PI)) * Math.exp(-0.5 * Math.pow((x - this.mu) / this.sigma, 2));
}
/**
* @return mu
*/
public double getMu()
{
return this.mu;
}
/**
* @return sigma
*/
public double getSigma()
{
return this.sigma;
}
/** {@inheritDoc} */
@Override
public void setStream(final StreamInterface stream)
{
super.setStream(stream);
this.haveNextNextGaussian = false;
}
/** {@inheritDoc} */
@Override
public String toString()
{
return "Normal(" + this.mu + "," + this.sigma + ")";
}
}