View Javadoc
1   package nl.tudelft.simulation.jstats.distributions;
2   
3   import org.djutils.exceptions.Throw;
4   
5   import nl.tudelft.simulation.jstats.math.ProbMath;
6   import nl.tudelft.simulation.jstats.streams.StreamInterface;
7   
8   /**
9    * The Negative Binomial distribution. It is also known as the Pascal distribution or Pólya distribution. It gives the
10   * probability of x failures where there are s-1 successes in a total of x+s-1 Bernoulli trials, and trial (x+s) is a success.
11   * The chance for success is p for each trial. For more information on this distribution see
12   * <a href="https://mathworld.wolfram.com/NegativeBinomialDistribution.html">
13   * https://mathworld.wolfram.com/NegativeBinomialDistribution.html </a>
14   * <p>
15   * Copyright (c) 2002-2025 Delft University of Technology, Jaffalaan 5, 2628 BX Delft, the Netherlands. All rights reserved. See
16   * for project information <a href="https://simulation.tudelft.nl/dsol/manual/" target="_blank">DSOL Manual</a>. The DSOL
17   * project is distributed under a three-clause BSD-style license, which can be found at
18   * <a href="https://simulation.tudelft.nl/dsol/docs/latest/license.html" target="_blank">DSOL License</a>.
19   * </p>
20   * @author <a href="https://www.linkedin.com/in/peterhmjacobs">Peter Jacobs </a>
21   * @author <a href="https://github.com/averbraeck">Alexander Verbraeck</a>
22   */
23  public class DistNegBinomial extends DistDiscrete
24  {
25      /** s is the number of successes in the sequence of (x+n) trials, where trial (x+n) is a success. */
26      private int s;
27  
28      /** p is the probability of success for each individual trial in the negative binomial distribution. */
29      private double p;
30  
31      /** lnp is a helper variable equal to ln(1-p) to avoid repetitive calculation. */
32      private double lnp;
33  
34      /**
35       * constructs a new negative binomial distribution.
36       * @param stream the random number stream
37       * @param s the number of successes in the sequence of (x+n) trials, where trial (x+n) is a success
38       * @param p the probability of success for each individual trial in the negative binomial distribution
39       * @throws IllegalArgumentException when s &lt;= 0 or p &lt;= 0 or p &gt;= 1
40       */
41      public DistNegBinomial(final StreamInterface stream, final int s, final double p)
42      {
43          super(stream);
44          Throw.when(s <= 0 || p <= 0.0 || p >= 1.0, IllegalArgumentException.class,
45                  "Error NegBinomial - s<=0 or p<=0.0 or p>=1.0");
46          this.s = s;
47          this.p = p;
48          this.lnp = Math.log(1.0 - this.p);
49      }
50  
51      @Override
52      public long draw()
53      {
54          long x = 0;
55          for (int i = 0; i < this.s; i++)
56          {
57              double u = this.stream.nextDouble();
58              x = x + (long) (Math.floor(Math.log(u) / this.lnp));
59          }
60          return x;
61      }
62  
63      @Override
64      public double probability(final long observation)
65      {
66          if (observation >= 0)
67          {
68              return ProbMath.combinations(this.s + observation - 1, observation) * Math.pow(this.p, this.s)
69                      * Math.pow(1 - this.p, observation);
70          }
71          return 0.0;
72      }
73  
74      /**
75       * Return the number of successes in the sequence of (x+n) trials, where trial (x+n) is a success.
76       * @return the number of successes in the sequence of (x+n) trials, where trial (x+n) is a success
77       */
78      public int getS()
79      {
80          return this.s;
81      }
82  
83      /**
84       * Return the probability of success for each individual trial in the negative binomial distribution.
85       * @return the probability of success for each individual trial in the negative binomial distribution
86       */
87      public double getP()
88      {
89          return this.p;
90      }
91  
92      @Override
93      public String toString()
94      {
95          return "NegBinomial(" + this.s + "," + this.p + ")";
96      }
97  }