View Javadoc
1   package nl.tudelft.simulation.jstats.distributions;
2   
3   import org.djutils.exceptions.Throw;
4   
5   import nl.tudelft.simulation.jstats.math.ProbMath;
6   import nl.tudelft.simulation.jstats.streams.StreamInterface;
7   
8   /**
9    * The Erlang distribution. For more information on this distribution see
10   * <a href="https://mathworld.wolfram.com/ErlangDistribution.html"> http://mathworld.wolfram.com/ErlangDistribution.html
11   * </a><br>
12   * The Erlang distribution is the distribution of a sum of k independent exponential variables with the scale parameter as the
13   * mean. The scale parameter is equal to 1/rate or 1/&lambda;, giving the entire Erlang distribution a mean of k*scale.
14   * <p>
15   * Copyright (c) 2002-2025 Delft University of Technology, Jaffalaan 5, 2628 BX Delft, the Netherlands. All rights reserved. See
16   * for project information <a href="https://simulation.tudelft.nl/dsol/manual/" target="_blank">DSOL Manual</a>. The DSOL
17   * project is distributed under a three-clause BSD-style license, which can be found at
18   * <a href="https://simulation.tudelft.nl/dsol/docs/latest/license.html" target="_blank">DSOL License</a>.
19   * </p>
20   * @author <a href="https://www.linkedin.com/in/peterhmjacobs">Peter Jacobs </a>
21   * @author <a href="https://github.com/averbraeck">Alexander Verbraeck</a>
22   */
23  public class DistErlang extends DistContinuous
24  {
25      /**
26       * k is the shape parameter of the Erlang distribution. The shape k is the number of times a drawing is done from the
27       * exponential distribution, where the Erlang distribution is the sum of these k independent exponential variables.
28       */
29      private final int k;
30  
31      /** scale is the mean of a single exponential distribution (1/rate), of which k are summed. */
32      private final double scale;
33  
34      /** the rate value of the Erlang distribution (1 / scale). */
35      private final double lambda;
36  
37      /** distGamma is the underlying gamma distribution. */
38      private final DistGamma distGamma;
39  
40      /** GAMMATHRESHOLD is the threshold above which we use a gamma function and below repeated drawing. */
41      private static final short GAMMATHRESHOLD = 10;
42  
43      /**
44       * Construct a new Erlang distribution with k and a mean (so not k and a rate) as parameters. It is the distribution of a
45       * sum of k independent exponential variables with the scale parameter as the mean. The scale parameter is equal to 1/rate
46       * or 1/&lambda;, giving the entire Erlang distribution a mean of k*scale.
47       * @param stream the random number stream
48       * @param scale the mean of a single sample from the exponential distribution, of which k are summed. Equal to 1/rate or
49       *            1/&lambda;.
50       * @param k the shape parameter of the Erlang distribution. The shape k is the number of times a drawing is done from the
51       *            exponential distribution, where the Erlang distribution is the sum of these k independent exponential
52       *            variables.
53       * @throws IllegalArgumentException when k &lt;= 0 or scale &lt;= 0
54       */
55      public DistErlang(final StreamInterface stream, final double scale, final int k)
56      {
57          super(stream);
58          Throw.when(k <= 0 || scale <= 0.0, IllegalArgumentException.class, "Error Erlang - k <= 0 or scale <= 0");
59          this.k = k;
60          this.scale = scale;
61          this.lambda = 1.0 / scale;
62          this.distGamma = this.k <= DistErlang.GAMMATHRESHOLD ? null : new DistGamma(stream, this.k, this.scale);
63      }
64  
65      @Override
66      public double draw()
67      {
68          if (this.k <= DistErlang.GAMMATHRESHOLD)
69          {
70              // according to Law and Kelton, Simulation Modeling and Analysis
71              // repeated drawing and composition is usually faster for k<=10
72              double product = 1.0;
73              for (int i = 1; i <= this.k; i++)
74              {
75                  product = product * this.stream.nextDouble();
76              }
77              return -this.scale * Math.log(product);
78          }
79          // and using the gamma distribution is faster for k>10
80          return this.distGamma.draw();
81      }
82  
83      @Override
84      public double getProbabilityDensity(final double x)
85      {
86          if (x < 0)
87          {
88              return 0;
89          }
90          return this.lambda * Math.exp(-this.lambda * x) * Math.pow(this.lambda * x, this.k - 1)
91                  / ProbMath.factorial(this.k - 1);
92      }
93  
94      /**
95       * @return k
96       */
97      public int getK()
98      {
99          return this.k;
100     }
101 
102     /**
103      * @return scale parameter
104      */
105     public double getScale()
106     {
107         return this.scale;
108     }
109 
110     @Override
111     public void setStream(final StreamInterface stream)
112     {
113         super.setStream(stream);
114         if (this.distGamma != null)
115         {
116             this.distGamma.setStream(stream);
117         }
118     }
119 
120     @Override
121     public String toString()
122     {
123         return "Erlang(" + this.scale + "," + this.k + ")";
124     }
125 }